Flow
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=openmlstudy14.preprocessing.ConditionalImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,variencethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,classifier=sklearn.ensemble.weight_boosting.AdaBoostClassifier(base_estimator=sklearn.tree.tree.DecisionTreeClassifier)))

sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=openmlstudy14.preprocessing.ConditionalImputer,hotencoding=sklearn.preprocessing.data.OneHotEncoder,variencethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,classifier=sklearn.ensemble.weight_boosting.AdaBoostClassifier(base_estimator=sklearn.tree.tree.DecisionTreeClassifier)))

Visibility: public Uploaded 05-07-2018 by Jan van Rijn sklearn==0.18.1 numpy>=1.6.1 scipy>=0.9 0 runs
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • openml-python python scikit-learn sklearn sklearn_0.18.1
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Automatically created scikit-learn flow.

Components

Parameters

cvdefault: null
error_scoredefault: "raise"
estimatordefault: {"oml-python:serialized_object": "component_reference", "value": {"key": "estimator", "step_name": null}}
fit_params
iiddefault: true
n_iterdefault: 1
n_jobsdefault: 1
param_distributionsdefault: {"classifier__algorithm": ["SAMME.R", "SAMME"], "classifier__base_estimator__max_depth": {"oml-python:serialized_object": "rv_frozen", "value": {"dist": "scipy.stats._discrete_distns.randint_gen", "a": 1, "b": 10, "args": [1, 11], "kwds": {}}}, "classifier__learning_rate": {"oml-python:serialized_object": "rv_frozen", "value": {"dist": "openmldefaults.search.distributions.loguniform_gen", "a": 0.01, "b": 2.0, "args": [2, 0.01, 2.0], "kwds": {}}}, "classifier__n_estimators": {"oml-python:serialized_object": "rv_frozen", "value": {"dist": "scipy.stats._discrete_distns.randint_gen", "a": 50, "b": 500, "args": [50, 501], "kwds": {}}}, "imputation__strategy": ["mean", "median", "most_frequent"]}
pre_dispatchdefault: "2*n_jobs"
random_statedefault: null
refitdefault: true
return_train_scoredefault: true
scoringdefault: null
verbosedefault: 0

0
Runs

List all runs
Parameter:
Rendering chart
Rendering table