Flow
rm.process(logistic_regression)

rm.process(logistic_regression)

Visibility: public Uploaded 19-04-2018 by Tim Beurskens RapidMiner_8.1.001 1 runs
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
A RapidMiner Flow

Parameters

LogisticRegressionSVM__CThe SVM complexity constant. Use -1 for different C values for positive and negative.default: 1.0
LogisticRegressionSVM__calculate_weightsIndicates if attribute weights should be returned.default: true
LogisticRegressionSVM__convergence_epsilonPrecision on the KKT conditionsdefault: 0.001
LogisticRegressionSVM__kernel_aThe SVM kernel parameter a.default: 1.0
LogisticRegressionSVM__kernel_bThe SVM kernel parameter b.default: 0.0
LogisticRegressionSVM__kernel_cacheSize of the cache for kernel evaluations im MBdefault: 200
LogisticRegressionSVM__kernel_degreeThe SVM kernel parameter degree.default: 2.0
LogisticRegressionSVM__kernel_gammaThe SVM kernel parameter gamma.default: 1.0
LogisticRegressionSVM__kernel_shiftThe SVM kernel parameter shift.default: 1.0
LogisticRegressionSVM__kernel_sigma1The SVM kernel parameter sigma1.default: 1.0
LogisticRegressionSVM__kernel_sigma2The SVM kernel parameter sigma2.default: 0.0
LogisticRegressionSVM__kernel_sigma3The SVM kernel parameter sigma3.default: 2.0
LogisticRegressionSVM__kernel_typeThe SVM kernel typedefault: dot
LogisticRegressionSVM__max_iterationsStop after this many iterationsdefault: 100000
LogisticRegressionSVM__return_optimization_performanceIndicates if final optimization fitness should be returned as performance.default: true
LogisticRegressionSVM__scaleScale the example values and store the scaling parameters for test set.default: true

0
Runs

List all runs
Parameter:
Rendering chart
Rendering table