Clustering__add_as_label | If true, the cluster id is stored in an attribute with the special role 'label' instead of 'cluster'. | default: false |
Clustering__add_cluster_attribute | If enabled, a cluster id is generated as new special attribute directly in this operator, otherwise this operator does not add an id attribute. In the latter case you have to use the Apply Model operator to generate the cluster attribute. | default: true |
Clustering__determine_good_start_values | Determine the first k centroids using the K-Means++ heuristic described in "k-means++: The Advantages of Careful Seeding" by David Arthur and Sergei Vassilvitskii 2007 | default: false |
Clustering__divergence | Select divergence | default: SquaredEuclideanDistance |
Clustering__k | The number of clusters which should be detected. | default: 2 |
Clustering__kernel_a | The kernel parameter a. | default: 1.0 |
Clustering__kernel_b | The kernel parameter b. | default: 0.0 |
Clustering__kernel_degree | The kernel parameter degree. | default: 3.0 |
Clustering__kernel_gamma | The kernel parameter gamma. | default: 1.0 |
Clustering__kernel_shift | The kernel parameter shift. | default: 1.0 |
Clustering__kernel_sigma1 | The kernel parameter sigma1. | default: 1.0 |
Clustering__kernel_sigma2 | The kernel parameter sigma2. | default: 0.0 |
Clustering__kernel_sigma3 | The kernel parameter sigma3. | default: 2.0 |
Clustering__kernel_type | The kernel type | default: radial |
Clustering__local_random_seed | Specifies the local random seed | default: 1992 |
Clustering__max_optimization_steps | The maximal number of iterations performed for one run of k-Means. | default: 100 |
Clustering__max_runs | The maximal number of runs of k-Means with random initialization that are performed. | default: 10 |
Clustering__measure_types | The measure type | default: BregmanDivergences |
Clustering__mixed_measure | Select measure | default: MixedEuclideanDistance |
Clustering__nominal_measure | Select measure | default: NominalDistance |
Clustering__numerical_measure | Select measure | default: EuclideanDistance |
Clustering__remove_unlabeled | Delete the unlabeled examples. | default: false |
Clustering__use_local_random_seed | Indicates if a local random seed should be used. | default: false |
Normalize__allow_negative_values | Whether negative values should be allowed and used as absolute values | default: false |
Normalize__attribute | The attribute which should be chosen. | |
Normalize__attribute_filter_type | The condition specifies which attributes are selected or affected by this operator. | default: all |
Normalize__attributes | The attribute which should be chosen. | |
Normalize__block_type | The block type of the attributes. | default: value_series |
Normalize__create_view | Create View to apply preprocessing instead of changing the data | default: false |
Normalize__except_block_type | Except this block type. | default: value_series_end |
Normalize__except_regular_expression | A regular expression for the names of the attributes which should be filtered out although matching the above regular expression. | |
Normalize__except_value_type | Except this value type. | default: real |
Normalize__include_special_attributes | Indicate if this operator should also be applied on the special attributes. Otherwise they are always kept. | default: false |
Normalize__invert_selection | Indicates if only attributes should be accepted which would normally filtered. | default: false |
Normalize__max | The maximum value after normalization | default: 1.0 |
Normalize__method | Select the normalization method. | default: Z-transformation |
Normalize__min | The minimum value after normalization | default: 0.0 |
Normalize__numeric_condition | Parameter string for the condition, e.g. '>= 5' | |
Normalize__regular_expression | A regular expression for the names of the attributes which should be kept. | |
Normalize__return_preprocessing_model | Indicates if the preprocessing model should also be returned | default: false |
Normalize__use_block_type_exception | If enabled, an exception to the specified block type might be specified. | default: false |
Normalize__use_except_expression | If enabled, an exception to the specified regular expression might be specified. Attributes of matching this will be filtered out, although matching the first expression. | default: false |
Normalize__use_value_type_exception | If enabled, an exception to the specified value type might be specified. Attributes of this type will be filtered out, although matching the first specified type. | default: false |
Normalize__value_type | The value type of the attributes. | default: numeric |
Store2__repository_entry | Repository entry. | |