Flow
rm.process(normalize,concurrency:k_means,store)

rm.process(normalize,concurrency:k_means,store)

Visibility: public Uploaded 17-04-2018 by Luud Janssen RapidMiner_8.1.001 1 runs
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
A RapidMiner Flow

Parameters

Clustering__add_as_labelIf true, the cluster id is stored in an attribute with the special role 'label' instead of 'cluster'.default: false
Clustering__add_cluster_attributeIf enabled, a cluster id is generated as new special attribute directly in this operator, otherwise this operator does not add an id attribute. In the latter case you have to use the Apply Model operator to generate the cluster attribute.default: true
Clustering__determine_good_start_valuesDetermine the first k centroids using the K-Means++ heuristic described in "k-means++: The Advantages of Careful Seeding" by David Arthur and Sergei Vassilvitskii 2007default: false
Clustering__divergenceSelect divergencedefault: SquaredEuclideanDistance
Clustering__kThe number of clusters which should be detected.default: 2
Clustering__kernel_aThe kernel parameter a.default: 1.0
Clustering__kernel_bThe kernel parameter b.default: 0.0
Clustering__kernel_degreeThe kernel parameter degree.default: 3.0
Clustering__kernel_gammaThe kernel parameter gamma.default: 1.0
Clustering__kernel_shiftThe kernel parameter shift.default: 1.0
Clustering__kernel_sigma1The kernel parameter sigma1.default: 1.0
Clustering__kernel_sigma2The kernel parameter sigma2.default: 0.0
Clustering__kernel_sigma3The kernel parameter sigma3.default: 2.0
Clustering__kernel_typeThe kernel typedefault: radial
Clustering__local_random_seedSpecifies the local random seeddefault: 1992
Clustering__max_optimization_stepsThe maximal number of iterations performed for one run of k-Means.default: 100
Clustering__max_runsThe maximal number of runs of k-Means with random initialization that are performed.default: 10
Clustering__measure_typesThe measure typedefault: BregmanDivergences
Clustering__mixed_measureSelect measuredefault: MixedEuclideanDistance
Clustering__nominal_measureSelect measuredefault: NominalDistance
Clustering__numerical_measureSelect measuredefault: EuclideanDistance
Clustering__remove_unlabeledDelete the unlabeled examples.default: false
Clustering__use_local_random_seedIndicates if a local random seed should be used.default: false
Normalize__allow_negative_valuesWhether negative values should be allowed and used as absolute valuesdefault: false
Normalize__attributeThe attribute which should be chosen.
Normalize__attribute_filter_typeThe condition specifies which attributes are selected or affected by this operator.default: all
Normalize__attributesThe attribute which should be chosen.
Normalize__block_typeThe block type of the attributes.default: value_series
Normalize__create_viewCreate View to apply preprocessing instead of changing the datadefault: false
Normalize__except_block_typeExcept this block type.default: value_series_end
Normalize__except_regular_expressionA regular expression for the names of the attributes which should be filtered out although matching the above regular expression.
Normalize__except_value_typeExcept this value type.default: real
Normalize__include_special_attributesIndicate if this operator should also be applied on the special attributes. Otherwise they are always kept.default: false
Normalize__invert_selectionIndicates if only attributes should be accepted which would normally filtered.default: false
Normalize__maxThe maximum value after normalizationdefault: 1.0
Normalize__methodSelect the normalization method.default: Z-transformation
Normalize__minThe minimum value after normalizationdefault: 0.0
Normalize__numeric_conditionParameter string for the condition, e.g. '>= 5'
Normalize__regular_expressionA regular expression for the names of the attributes which should be kept.
Normalize__return_preprocessing_modelIndicates if the preprocessing model should also be returneddefault: false
Normalize__use_block_type_exceptionIf enabled, an exception to the specified block type might be specified.default: false
Normalize__use_except_expressionIf enabled, an exception to the specified regular expression might be specified. Attributes of matching this will be filtered out, although matching the first expression.default: false
Normalize__use_value_type_exceptionIf enabled, an exception to the specified value type might be specified. Attributes of this type will be filtered out, although matching the first specified type.default: false
Normalize__value_typeThe value type of the attributes.default: numeric
Store2__repository_entryRepository entry.

0
Runs

List all runs
Parameter:
Rendering chart
Rendering table