Normalize__allow_negative_values | Whether negative values should be allowed and used as absolute values | default: false |
Normalize__attribute | The attribute which should be chosen. | |
Normalize__attribute_filter_type | The condition specifies which attributes are selected or affected by this operator. | default: all |
Normalize__attributes | The attribute which should be chosen. | |
Normalize__block_type | The block type of the attributes. | default: value_series |
Normalize__create_view | Create View to apply preprocessing instead of changing the data | default: false |
Normalize__except_block_type | Except this block type. | default: value_series_end |
Normalize__except_regular_expression | A regular expression for the names of the attributes which should be filtered out although matching the above regular expression. | |
Normalize__except_value_type | Except this value type. | default: real |
Normalize__include_special_attributes | Indicate if this operator should also be applied on the special attributes. Otherwise they are always kept. | default: false |
Normalize__invert_selection | Indicates if only attributes should be accepted which would normally filtered. | default: false |
Normalize__max | The maximum value after normalization | default: 1.0 |
Normalize__method | Select the normalization method. | default: Z-transformation |
Normalize__min | The minimum value after normalization | default: 0.0 |
Normalize__numeric_condition | Parameter string for the condition, e.g. '>= 5' | |
Normalize__regular_expression | A regular expression for the names of the attributes which should be kept. | |
Normalize__return_preprocessing_model | Indicates if the preprocessing model should also be returned | default: false |
Normalize__use_block_type_exception | If enabled, an exception to the specified block type might be specified. | default: false |
Normalize__use_except_expression | If enabled, an exception to the specified regular expression might be specified. Attributes of matching this will be filtered out, although matching the first expression. | default: false |
Normalize__use_value_type_exception | If enabled, an exception to the specified value type might be specified. Attributes of this type will be filtered out, although matching the first specified type. | default: false |
Normalize__value_type | The value type of the attributes. | default: numeric |
Store__repository_entry | Repository entry. | |
k-NN__divergence | Select divergence | default: GeneralizedIDivergence |
k-NN__k | The used number of nearest neighbors. | default: 1 |
k-NN__kernel_a | The kernel parameter a. | default: 1.0 |
k-NN__kernel_b | The kernel parameter b. | default: 0.0 |
k-NN__kernel_degree | The kernel parameter degree. | default: 3.0 |
k-NN__kernel_gamma | The kernel parameter gamma. | default: 1.0 |
k-NN__kernel_shift | The kernel parameter shift. | default: 1.0 |
k-NN__kernel_sigma1 | The kernel parameter sigma1. | default: 1.0 |
k-NN__kernel_sigma2 | The kernel parameter sigma2. | default: 0.0 |
k-NN__kernel_sigma3 | The kernel parameter sigma3. | default: 2.0 |
k-NN__kernel_type | The kernel type | default: radial |
k-NN__measure_types | The measure type | default: MixedMeasures |
k-NN__mixed_measure | Select measure | default: MixedEuclideanDistance |
k-NN__nominal_measure | Select measure | default: NominalDistance |
k-NN__numerical_measure | Select measure | default: EuclideanDistance |
k-NN__weighted_vote | Indicates if the votes should be weighted by similarity. | default: false |