Flow
sklearn.ensemble.voting_classifier.VotingClassifier(svc=sklearn.pipeline.Pipeline(Scaler=sklearn.preprocessing.data.StandardScaler,PCA=sklearn.decomposition.pca.PCA,Classifier=sklearn.svm.classes.SVC),kn=sklearn.neighbors.classification.KNeighborsClassifier,gnb=sklearn.naive_bayes.GaussianNB,logreg=sklearn.pipeline.Pipeline(Scaler=sklearn.preprocessing.data.RobustScaler,Classifier=sklearn.linear_model.logistic.LogisticRegression))

sklearn.ensemble.voting_classifier.VotingClassifier(svc=sklearn.pipeline.Pipeline(Scaler=sklearn.preprocessing.data.StandardScaler,PCA=sklearn.decomposition.pca.PCA,Classifier=sklearn.svm.classes.SVC),kn=sklearn.neighbors.classification.KNeighborsClassifier,gnb=sklearn.naive_bayes.GaussianNB,logreg=sklearn.pipeline.Pipeline(Scaler=sklearn.preprocessing.data.RobustScaler,Classifier=sklearn.linear_model.logistic.LogisticRegression))

Visibility: public Uploaded 15-03-2018 by Maarten van Asseldonk sklearn==0.19.1 numpy>=1.6.1 scipy>=0.9 0 runs
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • openml-python python scikit-learn sklearn sklearn_0.19.1
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Automatically created scikit-learn flow.

Parameters

estimatorsdefault: [{"oml-python:serialized_object": "component_reference", "value": {"key": "svc", "step_name": "svc"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "kn", "step_name": "kn"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "gnb", "step_name": "gnb"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "logreg", "step_name": "logreg"}}]
flatten_transformdefault: null
n_jobsdefault: -1
votingdefault: "soft"
weightsdefault: [2, 7, 1, 1]

0
Runs

List all runs
Parameter:
Rendering chart
Rendering table