xgboost.sklearn.XGBClassifier
Visibility: public
Uploaded 05-03-2018 by
jelle dikker
sklearn==0.19.1
numpy>=1.6.1
scipy>=0.9
2 runs
0 likes
downloaded by 0 people 0 issues
0 downvotes
, 0 total downloads
Issue
#Downvotes for this reason
By
Automatically created scikit-learn flow.
Parameters
base_score default: 0.5 booster default: "gbtree" colsample_bylevel default: 1 colsample_bytree default: 1 gamma default: 0 learning_rate default: 0.12 max_delta_step default: 0 max_depth default: 6 min_child_weight default: 1 missing default: null n_estimators default: 75 n_jobs default: 1 nthread default: -1 objective default: "binary:logistic" random_state default: 0 reg_alpha default: 0 reg_lambda default: 1 scale_pos_weight default: 1 seed default: null silent default: true subsample default: 1
0
Runs
List all runs
Parameter:
none
base score
booster
colsample bylevel
colsample bytree
gamma
learning rate
max delta step
max depth
min child weight
missing
n estimators
n jobs
nthread
objective
random state
reg alpha
reg lambda
scale pos weight
seed
silent
subsample
Supervised Classification
Supervised Regression
Learning Curve
Supervised Data Stream Classification
Clustering
Machine Learning Challenge
Survival Analysis
Subgroup Discovery
area under roc curve
average cost
binominal test
build cpu time
build memory
c index
chi-squared
class complexity
class complexity gain
confusion matrix
correlation coefficient
cortana quality
coverage
f measure
information gain
jaccard
kappa
kb relative information score
kohavi wolpert bias squared
kohavi wolpert error
kohavi wolpert sigma squared
kohavi wolpert variance
kononenko bratko information score
matthews correlation coefficient
mean absolute error
mean class complexity
mean class complexity gain
mean f measure
mean kononenko bratko information score
mean precision
mean prior absolute error
mean prior class complexity
mean recall
mean weighted area under roc curve
mean weighted f measure
mean weighted precision
weighted recall
number of instances
os information
positives
precision
predictive accuracy
prior class complexity
prior entropy
probability
quality
ram hours
recall
relative absolute error
root mean prior squared error
root mean squared error
root relative squared error
run cpu time
run memory
run virtual memory
scimark benchmark
single point area under roc curve
total cost
unclassified instance count
usercpu time millis
usercpu time millis testing
usercpu time millis training
webb bias
webb error
webb variance
joint entropy
pattern team auroc10
wall clock time millis
wall clock time millis training
wall clock time millis testing
unweighted recall