Flow
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=mylib.preprocessing_openml14.ConditionalImputer,one-hot-encoder=sklearn.preprocessing.data.OneHotEncoder,variance-thresholding=sklearn.feature_selection.variance_threshold.VarianceThreshold,feature-scaling=sklearn.preprocessing.data.StandardScaler,classifier=sklearn.neural_network.multilayer_perceptron.MLPClassifier))

sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeline.Pipeline(imputation=mylib.preprocessing_openml14.ConditionalImputer,one-hot-encoder=sklearn.preprocessing.data.OneHotEncoder,variance-thresholding=sklearn.feature_selection.variance_threshold.VarianceThreshold,feature-scaling=sklearn.preprocessing.data.StandardScaler,classifier=sklearn.neural_network.multilayer_perceptron.MLPClassifier))

Visibility: public Uploaded 07-01-2018 by Benjamin Strang sklearn==0.19.1 numpy>=1.6.1 scipy>=0.9 231 runs
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • openml-python python scikit-learn sklearn sklearn_0.19.1 study_123
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Automatically created scikit-learn flow.

Components

Parameters

cvdefault: 2
error_scoredefault: "raise"
estimatordefault: {"oml-python:serialized_object": "component_reference", "value": {"key": "estimator", "step_name": null}}
fit_paramsdefault: null
iiddefault: true
n_iterdefault: 1
n_jobsdefault: 1
param_distributionsdefault: {"classifier__alpha": {"oml-python:serialized_object": "rv_frozen", "value": {"dist": "mylib.distributions.loguniform_gen", "a": 1e-07, "b": 0.0001, "args": [], "kwds": {"base": 10, "low": 1e-07, "high": 0.0001}}}, "classifier__tol": {"oml-python:serialized_object": "rv_frozen", "value": {"dist": "mylib.distributions.loguniform_gen", "a": 1e-05, "b": 0.1, "args": [], "kwds": {"base": 10, "low": 1e-05, "high": 0.1}}}, "imputation__strategy": ["mean", "median", "most_frequent"]}
pre_dispatchdefault: "2*n_jobs"
random_statedefault: 1
refitdefault: true
return_train_scoredefault: "warn"
scoringdefault: "accuracy"
verbosedefault: 0

0
Runs

List all runs
Parameter:
Rendering chart
Rendering table