rm.operator.support_vector_machine
Visibility: public
Uploaded 28-07-2017 by
Arlind Kadra
RapidMiner_7.5.0
0 runs
0 likes
downloaded by 0 people 0 issues
0 downvotes
, 0 total downloads
Issue |
#Downvotes for this reason |
By |
|
Parameters
C | The SVM complexity constant. Use -1 for different C values for positive and negative. | default: 0.0 |
L_neg | A factor for the SVM complexity constant for negative examples | default: 1.0 |
L_pos | A factor for the SVM complexity constant for positive examples | default: 1.0 |
balance_cost | Adapts Cpos and Cneg to the relative size of the classes | default: false |
calculate_weights | Indicates if attribute weights should be returned. | default: true |
convergence_epsilon | Precision on the KKT conditions | default: 0.001 |
epsilon | Insensitivity constant. No loss if prediction lies this close to true value | default: 0.0 |
epsilon_minus | Epsilon for negative deviation only | default: 0.0 |
epsilon_plus | Epsilon for positive deviation only | default: 0.0 |
estimate_performance | Indicates if this learner should also return a performance estimation. | default: false |
kernel_a | The SVM kernel parameter a. | default: 1.0 |
kernel_b | The SVM kernel parameter b. | default: 0.0 |
kernel_cache | Size of the cache for kernel evaluations im MB | default: 200 |
kernel_degree | The SVM kernel parameter degree. | default: 2.0 |
kernel_gamma | The SVM kernel parameter gamma. | default: 1.0 |
kernel_shift | The SVM kernel parameter shift. | default: 1.0 |
kernel_sigma1 | The SVM kernel parameter sigma1. | default: 1.0 |
kernel_sigma2 | The SVM kernel parameter sigma2. | default: 0.0 |
kernel_sigma3 | The SVM kernel parameter sigma3. | default: 2.0 |
kernel_type | The SVM kernel type | default: dot |
max_iterations | Stop after this many iterations | default: 100000 |
quadratic_loss_neg | Use quadratic loss for negative deviation | default: false |
quadratic_loss_pos | Use quadratic loss for positive deviation | default: false |
return_optimization_performance | Indicates if final optimization fitness should be returned as performance. | default: true |
scale | Scale the example values and store the scaling parameters for test set. | default: true |
0
Runs
List all runs
Parameter: