Flow
weka.AdaBoostM1_AttributeSelectedClassifier_CostSensitiveClassifier_RandomForest

weka.AdaBoostM1_AttributeSelectedClassifier_CostSensitiveClassifier_RandomForest

Visibility: public Uploaded 14-04-2017 by Daan Dinkla Weka_3.9.1 0 runs
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Yoav Freund, Robert E. Schapire: Experiments with a new boosting algorithm. In: Thirteenth International Conference on Machine Learning, San Francisco, 148-156, 1996.

Components

Wweka.AttributeSelectedClassifier_CostSensitiveClassifier_RandomForest(1)Full name of base classifier. (default: weka.classifiers.trees.DecisionStump)

Parameters

-do-not-check-capabilitiesIf set, classifier capabilities are not checked before classifier is built (use with caution).
INumber of iterations. (current value 10)default: 10
PPercentage of weight mass to base training on. (default 100, reduce to around 90 speed up)default: 100
QUse resampling for boosting.
SRandom number seed. (default 1)default: 1
WFull name of base classifier. (default: weka.classifiers.trees.DecisionStump)default: weka.classifiers.meta.AttributeSelectedClassifier
batch-sizeThe desired batch size for batch prediction (default 100).
num-decimal-placesThe number of decimal places for the output of numbers in the model (default 2).
output-debug-infoIf set, classifier is run in debug mode and may output additional info to the console

0
Runs

List all runs
Parameter:
Rendering chart
Rendering table