Flow
weka.NaiveBayesMultinomialText

weka.NaiveBayesMultinomialText

Visibility: public Uploaded 11-04-2017 by Arlind Kadra Weka_3.9.1 2 runs
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • Verified_Supervised_Classification weka weka_3.9.1
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Weka implementation of NaiveBayesMultinomialText

Parameters

-do-not-check-capabilitiesIf set, classifier capabilities are not checked before classifier is built (use with caution).
-stopwords-handlerThe stopwords handler to use (default Null).
MMinimum word frequency. Words with less than this frequence are ignored. If periodic pruning is turned on then this is also used to determine which words to remove from the dictionary (default = 3).default: 3.0
PHow often to prune the dictionary of low frequency words (default = 0, i.e. don't prune)default: 0
WUse word frequencies instead of binary bag of words.
batch-sizeThe desired batch size for batch prediction (default 100).
lnormSpecify L-norm to use (default 2.0)default: 2.0
lowercaseConvert all tokens to lowercase before adding to the dictionary.
normSpecify the norm that each instance must have (default 1.0)default: 1.0
normalizeNormalize document length (use in conjunction with -norm and -lnorm)
num-decimal-placesThe number of decimal places for the output of numbers in the model (default 2).
output-debug-infoIf set, classifier is run in debug mode and may output additional info to the console
stemmerThe stemmering algorihtm (classname plus parameters) to use.default: weka.core.stemmers.NullStemmer
tokenizerThe tokenizing algorihtm (classname plus parameters) to use. (default: weka.core.tokenizers.WordTokenizer)default: weka.core.tokenizers.WordTokenizer -delimiters " \r\n\t.,;:\'\"()?!"

0
Runs

List all runs
Parameter:
Rendering chart
Rendering table