Flow
weka.ClassificationViaClustering_SimpleKMeans_EuclideanDistance

weka.ClassificationViaClustering_SimpleKMeans_EuclideanDistance

Visibility: public Uploaded 03-06-2014 by Joaquin Vanschoren Weka_3.7.10 25 runs
0 likes downloaded by 1 people 0 issues 0 downvotes , 1 total downloads
  • Verified_Supervised_Classification
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Weka implementation of ClassificationViaClustering

Components

Wweka.SimpleKMeans_EuclideanDistance(1)Full name of clusterer. (default: weka.clusterers.SimpleKMeans)

Parameters

ADistance function to use. (default: weka.core.EuclideanDistance)
DIf set, classifier is run in debug mode and may output additional info to the console
IMaximum number of iterations.
MDon't replace missing values with mean/mode.
Nnumber of clusters. (default 2).
OPreserve order of instances.
PInitialize using the k-means++ method.
SRandom number seed. (default 10)
VDisplay std. deviations for centroids.
WFull name of clusterer. (default: weka.clusterers.SimpleKMeans)default: weka.clusterers.SimpleKMeans
fastEnables faster distance calculations, using cut-off values. Disables the calculation/output of squared errors/distances.
num-slotsNumber of execution slots. (default 1 - i.e. no parallelism)

0
Runs

List all runs
Parameter:
Rendering chart
Rendering table