Issue | #Downvotes for this reason | By |
---|
W | weka.CostSensitiveClassifier_AdaBoostM1_REPTree(3) | Full name of base classifier. (default: weka.classifiers.trees.REPTree) |
-do-not-check-capabilities | If set, classifier capabilities are not checked before classifier is built (use with caution). | |
-represent-copies-using-weights | Represent copies of instances using weights rather than explicitly. | |
I | Number of iterations. (default 10) | default: 10 |
L | Maximum tree depth (default -1, no maximum) | |
M | Set minimum number of instances per leaf (default 2). | |
N | Number of folds for reduced error pruning (default 3). | |
O | Calculate the out of bag error. | |
P | Size of each bag, as a percentage of the training set size. (default 100) | default: 100 |
R | Spread initial count over all class values (i.e. don't use 1 per value) | |
S | Random number seed. (default 1) | default: 1 |
V | Set minimum numeric class variance proportion of train variance for split (default 1e-3). | |
W | Full name of base classifier. (default: weka.classifiers.trees.REPTree) | default: weka.classifiers.meta.CostSensitiveClassifier |
num-decimal-places | The number of decimal places for the output of numbers in the model (default 2). | |
num-slots | Number of execution slots. (default 1 - i.e. no parallelism) (use 0 to auto-detect number of cores) | default: 1 |
output-debug-info | If set, classifier is run in debug mode and may output additional info to the console |