Issue | #Downvotes for this reason | By |
---|
estimators | Invoking the ``fit`` method on the ``VotingClassifier`` will fit clones of those original estimators that will be stored in the class attribute `self.estimators_` | default: [{"oml-python:serialized_object": "component_reference", "value": {"key": "DecisionTreeClassifier", "step_name": "DecisionTreeClassifier"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "ExtraTreeClassifier", "step_name": "ExtraTreeClassifier"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "KNN", "step_name": "KNN"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "RFC", "step_name": "RFC"}}] |
n_jobs | The number of jobs to run in parallel for ``fit`` If -1, then the number of jobs is set to the number of cores. | default: 1 |
voting | If 'hard', uses predicted class labels for majority rule voting Else if 'soft', predicts the class label based on the argmax of the sums of the predicted probabilities, which is recommended for an ensemble of well-calibrated classifiers | default: "soft" |
weights | Sequence of weights (`float` or `int`) to weight the occurrences of predicted class labels (`hard` voting) or class probabilities before averaging (`soft` voting). Uses uniform weights if `None` | default: null |