Flow
sklearn.neighbors.classification.KNeighborsClassifier

sklearn.neighbors.classification.KNeighborsClassifier

Visibility: public Uploaded 05-05-2020 by Tim Kraakman sklearn==0.18.1 numpy>=1.6.1 scipy>=0.9 4 runs
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • openml-python python scikit-learn sklearn sklearn_0.18.1
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Classifier implementing the k-nearest neighbors vote.

Parameters

algorithmdefault: "auto"
leaf_sizeLeaf size passed to BallTree or KDTree. This can affect the speed of the construction and query, as well as the memory required to store the tree. The optimal value depends on the nature of the problemdefault: 30
metricthe distance metric to use for the tree. The default metric is minkowski, and with p=2 is equivalent to the standard Euclidean metric. See the documentation of the DistanceMetric class for a list of available metricsdefault: "minkowski"
metric_paramsAdditional keyword arguments for the metric functiondefault: null
n_jobsThe number of parallel jobs to run for neighbors search If ``-1``, then the number of jobs is set to the number of CPU cores Doesn't affect :meth:`fit` method Examples -------- >>> X = [[0], [1], [2], [3]] >>> y = [0, 0, 1, 1] >>> from sklearn.neighbors import KNeighborsClassifier >>> neigh = KNeighborsClassifier(n_neighbors=3) >>> neigh.fit(X, y) # doctest: +ELLIPSIS KNeighborsClassifier(...) >>> print(neigh.predict([[1.1]])) [0] >>> print(neigh.predict_proba([[0.9]])) [[ 0.66666667 0.33333333]] See also -------- RadiusNeighborsClassifier KNeighborsRegressor RadiusNeighborsRegressor NearestNeighborsdefault: 1
n_neighborsNumber of neighbors to use by default for :meth:`k_neighbors` queriesdefault: 5
pPower parameter for the Minkowski metric. When p = 1, this is equivalent to using manhattan_distance (l1), and euclidean_distance (l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is useddefault: 2
weightsweight function used in prediction. Possible values: - 'uniform' : uniform weights. All points in each neighborhood are weighted equally - 'distance' : weight points by the inverse of their distance in this case, closer neighbors of a query point will have a greater influence than neighbors which are further away - [callable] : a user-defined function which accepts an array of distances, and returns an array of the same shape containing the weights algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, optional Algorithm used to compute the nearest neighbors: - 'ball_tree' will use :class:`BallTree` - 'kd_tree' will use :class:`KDTree` - 'brute' will use a brute-force search - 'auto' will attempt to decide the most appropriate algorithm based on the values passed to :meth:`fit` method Note: fitting on sparse input will override the setting of this parameter, using brute forcedefault: "uniform"

0
Runs

List all runs
Parameter:
Rendering chart
Rendering table