Flow
sklearn.neighbors._regression.KNeighborsRegressor

sklearn.neighbors._regression.KNeighborsRegressor

Visibility: public Uploaded 28-03-2020 by George Volkov sklearn==0.22.1 numpy>=1.6.1 scipy>=0.9 12 runs
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • openml-python python scikit-learn sklearn sklearn_0.22.1
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Regression based on k-nearest neighbors. The target is predicted by local interpolation of the targets associated of the nearest neighbors in the training set.

Parameters

algorithmdefault: "auto"
leaf_sizeLeaf size passed to BallTree or KDTree. This can affect the speed of the construction and query, as well as the memory required to store the tree. The optimal value depends on the nature of the problemdefault: 30
metricthe distance metric to use for the tree. The default metric is minkowski, and with p=2 is equivalent to the standard Euclidean metric. See the documentation of the DistanceMetric class for a list of available metrics If metric is "precomputed", X is assumed to be a distance matrix and must be square during fit. X may be a :term:`Glossary `, in which case only "nonzero" elements may be considered neighborsdefault: "minkowski"
metric_paramsAdditional keyword arguments for the metric functiondefault: null
n_jobsThe number of parallel jobs to run for neighbors search ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context ``-1`` means using all processors. See :term:`Glossary ` for more details Doesn't affect :meth:`fit` method.default: null
n_neighborsNumber of neighbors to use by default for :meth:`kneighbors` queriesdefault: 10
pPower parameter for the Minkowski metric. When p = 1, this is equivalent to using manhattan_distance (l1), and euclidean_distance (l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is useddefault: 2
weightsweight function used in prediction. Possible values: - 'uniform' : uniform weights. All points in each neighborhood are weighted equally - 'distance' : weight points by the inverse of their distance in this case, closer neighbors of a query point will have a greater influence than neighbors which are further away - [callable] : a user-defined function which accepts an array of distances, and returns an array of the same shape containing the weights Uniform weights are used by default algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, optional Algorithm used to compute the nearest neighbors: - 'ball_tree' will use :class:`BallTree` - 'kd_tree' will use :class:`KDTree` - 'brute' will use a brute-force search - 'auto' will attempt to decide the most appropriate algorithm based on the values passed to :meth:`fit` method Note: fitting on sparse input will override the setting of this parameter, using brute forcedefault: "uniform"

0
Runs

List all runs
Parameter:
Rendering chart
Rendering table