Flow
mxnet.gluon.nn.basic_layers.HybridSequential.75709f3c

mxnet.gluon.nn.basic_layers.HybridSequential.75709f3c

Visibility: public Uploaded 05-06-2019 by Adrian-Stefan Mares mxnet==1.5.0 numpy>=1.6.1 scipy>=0.9 3 runs
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • mxnet mxnet_1.5.0 openml-python python
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Automatically created MXNet flow.

Parameters

00_datadefault: {"inputs": [], "name": "data", "op": "null"}
01_hybridsequential0_hybridlambda0_reshape0default: {"attrs": {"shape": "(-1, 1, 28, 28)"}, "inputs": [[0, 0, 0]], "name": "hybridsequential0_hybridlambda0_reshape0", "op": "Reshape"}
02_hybridsequential0_batchnorm0_gammadefault: {"attrs": {"__dtype__": "0", "__init__": "ones", "__lr_mult__": "1.0", "__shape__": "(0,)", "__storage_type__": "0", "__wd_mult__": "1.0"}, "inputs": [], "name": "hybridsequential0_batchnorm0_gamma", "op": "null"}
03_hybridsequential0_batchnorm0_betadefault: {"attrs": {"__dtype__": "0", "__init__": "zeros", "__lr_mult__": "1.0", "__shape__": "(0,)", "__storage_type__": "0", "__wd_mult__": "1.0"}, "inputs": [], "name": "hybridsequential0_batchnorm0_beta", "op": "null"}
04_hybridsequential0_batchnorm0_running_meandefault: {"attrs": {"__dtype__": "0", "__init__": "zeros", "__lr_mult__": "1.0", "__shape__": "(0,)", "__storage_type__": "0", "__wd_mult__": "1.0"}, "inputs": [], "name": "hybridsequential0_batchnorm0_running_mean", "op": "null"}
05_hybridsequential0_batchnorm0_running_vardefault: {"attrs": {"__dtype__": "0", "__init__": "ones", "__lr_mult__": "1.0", "__shape__": "(0,)", "__storage_type__": "0", "__wd_mult__": "1.0"}, "inputs": [], "name": "hybridsequential0_batchnorm0_running_var", "op": "null"}
06_hybridsequential0_batchnorm0_fwddefault: {"attrs": {"axis": "1", "eps": "1e-05", "fix_gamma": "False", "momentum": "0.9", "use_global_stats": "False"}, "inputs": [[1, 0, 0], [2, 0, 0], [3, 0, 0], [4, 0, 1], [5, 0, 1]], "name": "hybridsequential0_batchnorm0_fwd", "op": "BatchNorm"}
07_hybridsequential0_conv0_weightdefault: {"attrs": {"__dtype__": "0", "__lr_mult__": "1.0", "__shape__": "(32, 0, 5, 5)", "__storage_type__": "0", "__wd_mult__": "1.0"}, "inputs": [], "name": "hybridsequential0_conv0_weight", "op": "null"}
08_hybridsequential0_conv0_biasdefault: {"attrs": {"__dtype__": "0", "__init__": "zeros", "__lr_mult__": "1.0", "__shape__": "(32,)", "__storage_type__": "0", "__wd_mult__": "1.0"}, "inputs": [], "name": "hybridsequential0_conv0_bias", "op": "null"}
09_hybridsequential0_conv0_fwddefault: {"attrs": {"dilate": "(1, 1)", "kernel": "(5, 5)", "layout": "NCHW", "no_bias": "False", "num_filter": "32", "num_group": "1", "pad": "(0, 0)", "stride": "(1, 1)"}, "inputs": [[6, 0, 0], [7, 0, 0], [8, 0, 0]], "name": "hybridsequential0_conv0_fwd", "op": "Convolution"}
10_hybridsequential0_leakyrelu0_fwddefault: {"attrs": {"act_type": "leaky", "slope": "0.01"}, "inputs": [[9, 0, 0]], "name": "hybridsequential0_leakyrelu0_fwd", "op": "LeakyReLU"}
11_hybridsequential0_pool0_fwddefault: {"attrs": {"global_pool": "False", "kernel": "(2, 2)", "layout": "NCHW", "pad": "(0, 0)", "pool_type": "max", "pooling_convention": "valid", "stride": "(2, 2)"}, "inputs": [[10, 0, 0]], "name": "hybridsequential0_pool0_fwd", "op": "Pooling"}
12_hybridsequential0_conv1_weightdefault: {"attrs": {"__dtype__": "0", "__lr_mult__": "1.0", "__shape__": "(64, 0, 5, 5)", "__storage_type__": "0", "__wd_mult__": "1.0"}, "inputs": [], "name": "hybridsequential0_conv1_weight", "op": "null"}
13_hybridsequential0_conv1_biasdefault: {"attrs": {"__dtype__": "0", "__init__": "zeros", "__lr_mult__": "1.0", "__shape__": "(64,)", "__storage_type__": "0", "__wd_mult__": "1.0"}, "inputs": [], "name": "hybridsequential0_conv1_bias", "op": "null"}
14_hybridsequential0_conv1_fwddefault: {"attrs": {"dilate": "(1, 1)", "kernel": "(5, 5)", "layout": "NCHW", "no_bias": "False", "num_filter": "64", "num_group": "1", "pad": "(0, 0)", "stride": "(1, 1)"}, "inputs": [[11, 0, 0], [12, 0, 0], [13, 0, 0]], "name": "hybridsequential0_conv1_fwd", "op": "Convolution"}
15_hybridsequential0_leakyrelu1_fwddefault: {"attrs": {"act_type": "leaky", "slope": "0.01"}, "inputs": [[14, 0, 0]], "name": "hybridsequential0_leakyrelu1_fwd", "op": "LeakyReLU"}
16_hybridsequential0_pool1_fwddefault: {"attrs": {"global_pool": "False", "kernel": "(2, 2)", "layout": "NCHW", "pad": "(0, 0)", "pool_type": "max", "pooling_convention": "valid", "stride": "(2, 2)"}, "inputs": [[15, 0, 0]], "name": "hybridsequential0_pool1_fwd", "op": "Pooling"}
17_hybridsequential0_flatten0_flatten0default: {"inputs": [[16, 0, 0]], "name": "hybridsequential0_flatten0_flatten0", "op": "Flatten"}
18_hybridsequential0_dense0_weightdefault: {"attrs": {"__dtype__": "0", "__lr_mult__": "1.0", "__shape__": "(256, 0)", "__storage_type__": "0", "__wd_mult__": "1.0"}, "inputs": [], "name": "hybridsequential0_dense0_weight", "op": "null"}
19_hybridsequential0_dense0_biasdefault: {"attrs": {"__dtype__": "0", "__init__": "zeros", "__lr_mult__": "1.0", "__shape__": "(256,)", "__storage_type__": "0", "__wd_mult__": "1.0"}, "inputs": [], "name": "hybridsequential0_dense0_bias", "op": "null"}
20_hybridsequential0_dense0_fwddefault: {"attrs": {"flatten": "True", "no_bias": "False", "num_hidden": "256"}, "inputs": [[17, 0, 0], [18, 0, 0], [19, 0, 0]], "name": "hybridsequential0_dense0_fwd", "op": "FullyConnected"}
21_hybridsequential0_leakyrelu2_fwddefault: {"attrs": {"act_type": "leaky", "slope": "0.01"}, "inputs": [[20, 0, 0]], "name": "hybridsequential0_leakyrelu2_fwd", "op": "LeakyReLU"}
22_hybridsequential0_dropout0_fwddefault: {"attrs": {"axes": "()", "cudnn_off": "False", "p": "0.2"}, "inputs": [[21, 0, 0]], "name": "hybridsequential0_dropout0_fwd", "op": "Dropout"}
23_hybridsequential0_dense1_weightdefault: {"attrs": {"__dtype__": "0", "__lr_mult__": "1.0", "__shape__": "(10, 0)", "__storage_type__": "0", "__wd_mult__": "1.0"}, "inputs": [], "name": "hybridsequential0_dense1_weight", "op": "null"}
24_hybridsequential0_dense1_biasdefault: {"attrs": {"__dtype__": "0", "__init__": "zeros", "__lr_mult__": "1.0", "__shape__": "(10,)", "__storage_type__": "0", "__wd_mult__": "1.0"}, "inputs": [], "name": "hybridsequential0_dense1_bias", "op": "null"}
25_hybridsequential0_dense1_fwddefault: {"attrs": {"flatten": "True", "no_bias": "False", "num_hidden": "10"}, "inputs": [[22, 0, 0], [23, 0, 0], [24, 0, 0]], "name": "hybridsequential0_dense1_fwd", "op": "FullyConnected"}
miscdefault: {"arg_nodes": [0, 2, 3, 4, 5, 7, 8, 12, 13, 18, 19, 23, 24], "attrs": {"mxnet_version": ["int", 10500]}, "heads": [[25, 0, 0]], "node_row_ptr": [0, 1, 2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29]}

0
Runs

List all runs
Parameter:
Rendering chart
Rendering table