Data
audiology

audiology

active ARFF Publicly available Visibility: public Uploaded 04-10-2014 by Joaquin Vanschoren
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
  • Chemistry Life Science mythbusting_1 study_1 study_144 study_15 study_20 study_41
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Author: Source: Unknown - Date unknown Please cite: Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and all others as negative ('N'). Originally converted by Quan Sun.

70 features

binaryClass (target)nominal2 unique values
0 missing
age_gt_60nominal2 unique values
0 missing
airnominal5 unique values
0 missing
airBoneGapnominal2 unique values
0 missing
ar_cnominal3 unique values
4 missing
ar_unominal3 unique values
3 missing
bonenominal4 unique values
75 missing
boneAbnormalnominal2 unique values
0 missing
bsernominal2 unique values
222 missing
history_buzzingnominal2 unique values
0 missing
history_dizzinessnominal2 unique values
0 missing
history_fluctuatingnominal2 unique values
0 missing
history_fullnessnominal2 unique values
0 missing
history_hereditynominal2 unique values
0 missing
history_nauseanominal2 unique values
0 missing
history_noisenominal2 unique values
0 missing
history_recruitmentnominal2 unique values
0 missing
history_ringingnominal2 unique values
0 missing
history_roaringnominal2 unique values
0 missing
history_vomitingnominal2 unique values
0 missing
late_wave_poornominal2 unique values
0 missing
m_at_2knominal2 unique values
0 missing
m_cond_lt_1knominal2 unique values
0 missing
m_gt_1knominal2 unique values
0 missing
m_m_gt_2knominal2 unique values
0 missing
m_m_snnominal2 unique values
0 missing
m_m_sn_gt_1knominal2 unique values
0 missing
m_m_sn_gt_2knominal2 unique values
0 missing
m_m_sn_gt_500nominal2 unique values
0 missing
m_p_sn_gt_2knominal2 unique values
0 missing
m_s_gt_500nominal2 unique values
0 missing
m_s_snnominal2 unique values
0 missing
m_s_sn_gt_1knominal2 unique values
0 missing
m_s_sn_gt_2knominal2 unique values
0 missing
m_s_sn_gt_3knominal2 unique values
0 missing
m_s_sn_gt_4knominal2 unique values
0 missing
m_sn_2_3knominal2 unique values
0 missing
m_sn_gt_1knominal2 unique values
0 missing
m_sn_gt_2knominal2 unique values
0 missing
m_sn_gt_3knominal2 unique values
0 missing
m_sn_gt_4knominal2 unique values
0 missing
m_sn_gt_500nominal2 unique values
0 missing
m_sn_gt_6knominal2 unique values
0 missing
m_sn_lt_1knominal2 unique values
0 missing
m_sn_lt_2knominal2 unique values
0 missing
m_sn_lt_3knominal2 unique values
0 missing
middle_wave_poornominal2 unique values
0 missing
mod_gt_4knominal2 unique values
0 missing
mod_mixednominal2 unique values
0 missing
mod_s_mixednominal2 unique values
0 missing
mod_s_sn_gt_500nominal2 unique values
0 missing
mod_snnominal2 unique values
0 missing
mod_sn_gt_1knominal2 unique values
0 missing
mod_sn_gt_2knominal2 unique values
0 missing
mod_sn_gt_3knominal2 unique values
0 missing
mod_sn_gt_4knominal2 unique values
0 missing
mod_sn_gt_500nominal2 unique values
0 missing
notch_4knominal2 unique values
0 missing
notch_at_4knominal2 unique values
0 missing
o_ar_cnominal3 unique values
5 missing
o_ar_unominal3 unique values
2 missing
s_sn_gt_1knominal2 unique values
0 missing
s_sn_gt_2knominal2 unique values
0 missing
s_sn_gt_4knominal2 unique values
0 missing
speechnominal6 unique values
6 missing
static_normalnominal2 unique values
0 missing
tympnominal5 unique values
0 missing
viith_nerve_signsnominal2 unique values
0 missing
wave_V_delayednominal2 unique values
0 missing
waveform_ItoV_prolongednominal2 unique values
0 missing

107 properties

226
Number of instances (rows) of the dataset.
70
Number of attributes (columns) of the dataset.
2
Number of distinct values of the target attribute (if it is nominal).
317
Number of missing values in the dataset.
222
Number of instances with at least one value missing.
0
Number of numeric attributes.
70
Number of nominal attributes.
0.84
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.66
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump
Maximum of means among attributes of the numeric type.
0
Minimal mutual information between the nominal attributes and the target attribute.
Second quartile (Median) of skewness among attributes of the numeric type.
0.84
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.31
Number of attributes divided by the number of instances.
0.42
Maximum mutual information between the nominal attributes and the target attribute.
2
The minimal number of distinct values among attributes of the nominal type.
88.57
Percentage of binary attributes.
Second quartile (Median) of standard deviation of attributes of the numeric type.
0.17
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
36.39
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
6
The maximum number of distinct values among attributes of the nominal type.
Minimum skewness among attributes of the numeric type.
98.23
Percentage of instances having missing values.
0.3
Third quartile of entropy among attributes.
0.58
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.97
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
Maximum skewness among attributes of the numeric type.
Minimum standard deviation of attributes of the numeric type.
2
Percentage of missing values.
Third quartile of kurtosis among attributes of the numeric type.
0.75
Average class difference between consecutive instances.
0.84
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.08
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
Maximum standard deviation of attributes of the numeric type.
25.22
Percentage of instances belonging to the least frequent class.
0
Percentage of numeric attributes.
Third quartile of means among attributes of the numeric type.
0.96
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.17
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.8
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0.32
Average entropy of the attributes.
57
Number of instances belonging to the least frequent class.
100
Percentage of nominal attributes.
0.02
Third quartile of mutual information between the nominal attributes and the target attribute.
0.07
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.58
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.97
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001
Mean kurtosis among attributes of the numeric type.
0.96
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.04
First quartile of entropy among attributes.
Third quartile of skewness among attributes of the numeric type.
0.82
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.84
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.08
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001
Mean of means among attributes of the numeric type.
0.08
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
First quartile of kurtosis among attributes of the numeric type.
Third quartile of standard deviation of attributes of the numeric type.
0.96
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.17
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.8
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.02
Average mutual information between the nominal attributes and the target attribute.
0.81
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes
First quartile of means among attributes of the numeric type.
0.96
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.07
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.58
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.97
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
13.21
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
62
Number of binary attributes.
0
First quartile of mutual information between the nominal attributes and the target attribute.
0.06
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.82
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.96
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.75
Standard deviation of the number of distinct values among attributes of the nominal type.
0.08
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001
2.23
Average number of distinct values among the attributes of the nominal type.
First quartile of skewness among attributes of the numeric type.
0.84
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.07
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.96
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk
0.8
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
Mean skewness among attributes of the numeric type.
First quartile of standard deviation of attributes of the numeric type.
0.96
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.82
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.09
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
74.78
Percentage of instances belonging to the most frequent class.
Mean standard deviation of attributes of the numeric type.
0.07
Second quartile (Median) of entropy among attributes.
0.06
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.81
Entropy of the target attribute values.
0.79
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk
169
Number of instances belonging to the most frequent class.
0.04
Minimal entropy among attributes.
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.84
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.96
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.89
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump
2.17
Maximum entropy among attributes.
Minimum kurtosis among attributes of the numeric type.
Second quartile (Median) of means among attributes of the numeric type.
0.06
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.15
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump
Maximum kurtosis among attributes of the numeric type.
Minimum of means among attributes of the numeric type.
0
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.

15 tasks

519 runs - estimation_procedure: 10-fold Crossvalidation - evaluation_measure: predictive_accuracy - target_feature: binaryClass
202 runs - estimation_procedure: 10 times 10-fold Crossvalidation - evaluation_measure: predictive_accuracy - target_feature: binaryClass
0 runs - estimation_procedure: 33% Holdout set - target_feature: binaryClass
0 runs - estimation_procedure: Interleaved Test then Train - target_feature: binaryClass
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task