Data
fri_c4_1000_50

fri_c4_1000_50

active ARFF Publicly available Visibility: public Uploaded 04-10-2014 by Joaquin Vanschoren
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
  • binarized_regression_problem Data Science Machine Learning mythbusting_1 Statistics study_1 study_15 study_20 study_41 study_7
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Author: Source: Unknown - Date unknown Please cite: Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a lower target value as positive ('P') and all others as negative ('N').

51 features

binaryClass (target)nominal2 unique values
0 missing
oz1numeric1000 unique values
0 missing
oz2numeric1000 unique values
0 missing
oz3numeric1000 unique values
0 missing
oz4numeric1000 unique values
0 missing
oz5numeric1000 unique values
0 missing
oz6numeric1000 unique values
0 missing
oz7numeric999 unique values
0 missing
oz8numeric1000 unique values
0 missing
oz9numeric1000 unique values
0 missing
oz10numeric1000 unique values
0 missing
oz11numeric1000 unique values
0 missing
oz12numeric1000 unique values
0 missing
oz13numeric1000 unique values
0 missing
oz14numeric1000 unique values
0 missing
oz15numeric1000 unique values
0 missing
oz16numeric999 unique values
0 missing
oz17numeric1000 unique values
0 missing
oz18numeric1000 unique values
0 missing
oz19numeric1000 unique values
0 missing
oz20numeric1000 unique values
0 missing
oz21numeric1000 unique values
0 missing
oz22numeric1000 unique values
0 missing
oz23numeric1000 unique values
0 missing
oz24numeric1000 unique values
0 missing
oz25numeric1000 unique values
0 missing
oz26numeric1000 unique values
0 missing
oz27numeric999 unique values
0 missing
oz28numeric1000 unique values
0 missing
oz29numeric1000 unique values
0 missing
oz30numeric1000 unique values
0 missing
oz31numeric1000 unique values
0 missing
oz32numeric1000 unique values
0 missing
oz33numeric1000 unique values
0 missing
oz34numeric1000 unique values
0 missing
oz35numeric1000 unique values
0 missing
oz36numeric1000 unique values
0 missing
oz37numeric999 unique values
0 missing
oz38numeric1000 unique values
0 missing
oz39numeric1000 unique values
0 missing
oz40numeric1000 unique values
0 missing
oz41numeric1000 unique values
0 missing
oz42numeric1000 unique values
0 missing
oz43numeric1000 unique values
0 missing
oz44numeric1000 unique values
0 missing
oz45numeric999 unique values
0 missing
oz46numeric1000 unique values
0 missing
oz47numeric1000 unique values
0 missing
oz48numeric1000 unique values
0 missing
oz49numeric1000 unique values
0 missing
oz50numeric999 unique values
0 missing

107 properties

1000
Number of instances (rows) of the dataset.
51
Number of attributes (columns) of the dataset.
2
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
50
Number of numeric attributes.
1
Number of nominal attributes.
0.35
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.85
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
1
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
0.16
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.73
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0
Standard deviation of the number of distinct values among attributes of the nominal type.
0.15
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001
2
Average number of distinct values among the attributes of the nominal type.
-0.04
First quartile of skewness among attributes of the numeric type.
0.68
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.89
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.13
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.56
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk
0.69
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
0.05
Mean skewness among attributes of the numeric type.
1
First quartile of standard deviation of attributes of the numeric type.
0.88
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.73
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.44
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
56
Percentage of instances belonging to the most frequent class.
1
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
0.16
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.99
Entropy of the target attribute values.
0.12
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk
560
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
-1.18
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.68
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.88
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.72
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump
Maximum entropy among attributes.
-1.28
Minimum kurtosis among attributes of the numeric type.
0
Second quartile (Median) of means among attributes of the numeric type.
0.16
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.28
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump
1.74
Maximum kurtosis among attributes of the numeric type.
-0
Minimum of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
0.68
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.44
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump
0
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
-0.01
Second quartile (Median) of skewness among attributes of the numeric type.
0.67
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.05
Number of attributes divided by the number of instances.
Maximum mutual information between the nominal attributes and the target attribute.
2
The minimal number of distinct values among attributes of the nominal type.
1.96
Percentage of binary attributes.
1
Second quartile (Median) of standard deviation of attributes of the numeric type.
0.32
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
2
The maximum number of distinct values among attributes of the nominal type.
-0.07
Minimum skewness among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
0.35
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.85
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
1.31
Maximum skewness among attributes of the numeric type.
1
Minimum standard deviation of attributes of the numeric type.
0
Percentage of missing values.
-1.15
Third quartile of kurtosis among attributes of the numeric type.
0.54
Average class difference between consecutive instances.
0.67
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.15
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
1
Maximum standard deviation of attributes of the numeric type.
44
Percentage of instances belonging to the least frequent class.
98.04
Percentage of numeric attributes.
0
Third quartile of means among attributes of the numeric type.
0.89
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.32
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.69
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001
Average entropy of the attributes.
440
Number of instances belonging to the least frequent class.
1.96
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
0.13
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.35
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.85
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001
-1.06
Mean kurtosis among attributes of the numeric type.
0.68
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes
First quartile of entropy among attributes.
0.02
Third quartile of skewness among attributes of the numeric type.
0.73
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.67
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.15
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0
Mean of means among attributes of the numeric type.
0.34
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
-1.2
First quartile of kurtosis among attributes of the numeric type.
1
Third quartile of standard deviation of attributes of the numeric type.
0.89
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.32
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.69
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001
Average mutual information between the nominal attributes and the target attribute.
0.3
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes
-0
First quartile of means among attributes of the numeric type.
0.88
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.13
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W

15 tasks

408 runs - estimation_procedure: 10-fold Crossvalidation - evaluation_measure: predictive_accuracy - target_feature: binaryClass
212 runs - estimation_procedure: 10 times 10-fold Crossvalidation - evaluation_measure: predictive_accuracy - target_feature: binaryClass
0 runs - estimation_procedure: 33% Holdout set - evaluation_measure: predictive_accuracy - target_feature: binaryClass
0 runs - estimation_procedure: Interleaved Test then Train - target_feature: binaryClass
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task