Data
ailerons

ailerons

active ARFF Publicly available Visibility: public Uploaded 04-10-2014 by Joaquin Vanschoren
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
  • Aerospace Engineering binarized_regression_problem Data Science Machine Learning mythbusting_1 Statistics study_1 study_15 study_20 study_41 study_7
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Author: Source: Unknown - Date unknown Please cite: Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a lower target value as positive ('P') and all others as negative ('N').

41 features

binaryClass (target)nominal2 unique values
0 missing
climbRatenumeric1411 unique values
0 missing
Sgznumeric182 unique values
0 missing
pnumeric193 unique values
0 missing
qnumeric99 unique values
0 missing
curPitchnumeric233 unique values
0 missing
curRollnumeric61 unique values
0 missing
absRollnumeric21 unique values
0 missing
diffClbnumeric88 unique values
0 missing
diffRollRatenumeric117 unique values
0 missing
diffDiffClbnumeric141 unique values
0 missing
SeTime1numeric60 unique values
0 missing
SeTime2numeric61 unique values
0 missing
SeTime3numeric61 unique values
0 missing
SeTime4numeric60 unique values
0 missing
SeTime5numeric60 unique values
0 missing
SeTime6numeric61 unique values
0 missing
SeTime7numeric61 unique values
0 missing
SeTime8numeric60 unique values
0 missing
SeTime9numeric60 unique values
0 missing
SeTime10numeric59 unique values
0 missing
SeTime11numeric59 unique values
0 missing
SeTime12numeric60 unique values
0 missing
SeTime13numeric60 unique values
0 missing
SeTime14numeric58 unique values
0 missing
diffSeTime1numeric10 unique values
0 missing
diffSeTime2numeric3 unique values
0 missing
diffSeTime3numeric10 unique values
0 missing
diffSeTime4numeric4 unique values
0 missing
diffSeTime5numeric10 unique values
0 missing
diffSeTime6numeric4 unique values
0 missing
diffSeTime7numeric10 unique values
0 missing
diffSeTime8numeric3 unique values
0 missing
diffSeTime9numeric10 unique values
0 missing
diffSeTime10numeric7 unique values
0 missing
diffSeTime11numeric12 unique values
0 missing
diffSeTime12numeric6 unique values
0 missing
diffSeTime13numeric13 unique values
0 missing
diffSeTime14numeric5 unique values
0 missing
alphanumeric17 unique values
0 missing
Senumeric58 unique values
0 missing

107 properties

13750
Number of instances (rows) of the dataset.
41
Number of attributes (columns) of the dataset.
2
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
40
Number of numeric attributes.
1
Number of nominal attributes.
2.37
Maximum skewness among attributes of the numeric type.
0
Minimum standard deviation of attributes of the numeric type.
0
Percentage of missing values.
16.11
Third quartile of kurtosis among attributes of the numeric type.
0.79
Average class difference between consecutive instances.
0.58
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.85
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
260.21
Maximum standard deviation of attributes of the numeric type.
42.39
Percentage of instances belonging to the least frequent class.
97.56
Percentage of numeric attributes.
0.02
Third quartile of means among attributes of the numeric type.
0.91
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.79
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.14
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
Average entropy of the attributes.
5828
Number of instances belonging to the least frequent class.
2.44
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
0.15
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.21
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.71
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0.85
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001
916.86
Mean kurtosis among attributes of the numeric type.
0.85
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes
First quartile of entropy among attributes.
2.35
Third quartile of skewness among attributes of the numeric type.
0.69
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.58
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.14
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001
-0.85
Mean of means among attributes of the numeric type.
0.29
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
6.76
First quartile of kurtosis among attributes of the numeric type.
0.09
Third quartile of standard deviation of attributes of the numeric type.
0.91
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.79
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.71
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001
Average mutual information between the nominal attributes and the target attribute.
0.37
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes
-0
First quartile of means among attributes of the numeric type.
0.93
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.15
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.21
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.58
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.85
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
1
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
0.14
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.69
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0
Standard deviation of the number of distinct values among attributes of the nominal type.
0.14
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001
2
Average number of distinct values among the attributes of the nominal type.
-2.18
First quartile of skewness among attributes of the numeric type.
0.71
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.91
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.82
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk
0.71
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
-4.56
Mean skewness among attributes of the numeric type.
0
First quartile of standard deviation of attributes of the numeric type.
0.93
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.15
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.17
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
57.61
Percentage of instances belonging to the most frequent class.
7.59
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
0.14
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.69
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.64
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk
7922
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
6.99
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.71
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.98
Entropy of the target attribute values.
Maximum entropy among attributes.
-0.62
Minimum kurtosis among attributes of the numeric type.
0
Second quartile (Median) of means among attributes of the numeric type.
0.93
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.77
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump
6874.5
Maximum kurtosis among attributes of the numeric type.
-12.6
Minimum of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
0.14
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.25
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump
0.63
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0.12
Second quartile (Median) of skewness among attributes of the numeric type.
0.71
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.52
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump
Maximum mutual information between the nominal attributes and the target attribute.
2
The minimal number of distinct values among attributes of the nominal type.
2.44
Percentage of binary attributes.
0.01
Second quartile (Median) of standard deviation of attributes of the numeric type.
0.79
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0
Number of attributes divided by the number of instances.
2
The maximum number of distinct values among attributes of the nominal type.
-75.97
Minimum skewness among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
0.21
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.

15 tasks

402 runs - estimation_procedure: 10-fold Crossvalidation - evaluation_measure: predictive_accuracy - target_feature: binaryClass
200 runs - estimation_procedure: 10 times 10-fold Crossvalidation - evaluation_measure: predictive_accuracy - target_feature: binaryClass
0 runs - estimation_procedure: 33% Holdout set - evaluation_measure: predictive_accuracy - target_feature: binaryClass
0 runs - estimation_procedure: Interleaved Test then Train - target_feature: binaryClass
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task