Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2007629

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2007629

deactivated ARFF Publicly available Visibility: public Uploaded 04-04-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL2007629 (TID: CHEMBL2007629), and it has 396 rows and 43 features (including IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings (with imputation of missing values if they exist).

45 features

pXC50 (target)numeric291 unique values
0 missing
molecule_id (row identifier)nominal396 unique values
0 missing
AMWnumeric362 unique values
0 missing
C.numeric131 unique values
0 missing
H.numeric153 unique values
0 missing
Menumeric74 unique values
0 missing
Minumeric62 unique values
0 missing
Mpnumeric150 unique values
0 missing
Mvnumeric152 unique values
0 missing
MWnumeric380 unique values
0 missing
N.numeric98 unique values
0 missing
nABnumeric19 unique values
0 missing
nATnumeric54 unique values
0 missing
nBnumeric1 unique values
0 missing
nBMnumeric29 unique values
0 missing
nBOnumeric35 unique values
0 missing
nBRnumeric2 unique values
0 missing
nBTnumeric57 unique values
0 missing
nCnumeric26 unique values
0 missing
nCLnumeric3 unique values
0 missing
nCspnumeric3 unique values
0 missing
nCsp2numeric25 unique values
0 missing
nCsp3numeric20 unique values
0 missing
nDBnumeric9 unique values
0 missing
nFnumeric7 unique values
0 missing
nHnumeric32 unique values
0 missing
nHetnumeric14 unique values
0 missing
nHMnumeric5 unique values
0 missing
nInumeric1 unique values
0 missing
nNnumeric9 unique values
0 missing
nOnumeric9 unique values
0 missing
nPnumeric2 unique values
0 missing
nSnumeric5 unique values
0 missing
nSKnumeric32 unique values
0 missing
nTBnumeric3 unique values
0 missing
nXnumeric7 unique values
0 missing
O.numeric106 unique values
0 missing
RBFnumeric122 unique values
0 missing
RBNnumeric19 unique values
0 missing
SCBOnumeric79 unique values
0 missing
Senumeric378 unique values
0 missing
Sinumeric379 unique values
0 missing
Spnumeric374 unique values
0 missing
Svnumeric381 unique values
0 missing
X.numeric44 unique values
0 missing

107 properties

396
Number of instances (rows) of the dataset.
45
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
44
Number of numeric attributes.
1
Number of nominal attributes.
396
Maximum kurtosis among attributes of the numeric type.
0
Minimum of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump
391.75
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
2.29
Second quartile (Median) of skewness among attributes of the numeric type.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
0
Percentage of binary attributes.
2.17
Second quartile (Median) of standard deviation of attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.11
Number of attributes divided by the number of instances.
The maximum number of distinct values among attributes of the nominal type.
-0.45
Minimum skewness among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
19.9
Maximum skewness among attributes of the numeric type.
0
Minimum standard deviation of attributes of the numeric type.
0
Percentage of missing values.
41.81
Third quartile of kurtosis among attributes of the numeric type.
0.62
Average class difference between consecutive instances.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
87.84
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
97.78
Percentage of numeric attributes.
29.07
Third quartile of means among attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
2.22
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001
28.91
Mean kurtosis among attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes
First quartile of entropy among attributes.
4.21
Third quartile of skewness among attributes of the numeric type.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001
22.08
Mean of means among attributes of the numeric type.
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.67
First quartile of kurtosis among attributes of the numeric type.
6.2
Third quartile of standard deviation of attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001
Average mutual information between the nominal attributes and the target attribute.
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.68
First quartile of means among attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Standard deviation of the number of distinct values among attributes of the nominal type.
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001
Average number of distinct values among the attributes of the nominal type.
0.39
First quartile of skewness among attributes of the numeric type.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
2.69
Mean skewness among attributes of the numeric type.
0.35
First quartile of standard deviation of attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
Percentage of instances belonging to the most frequent class.
5.65
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
10.01
Second quartile (Median) of kurtosis among attributes of the numeric type.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
Entropy of the target attribute values.
Maximum entropy among attributes.
-0.51
Minimum kurtosis among attributes of the numeric type.
4.97
Second quartile (Median) of means among attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump

11 tasks

0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task