Data
fri_c4_250_100

fri_c4_250_100

active ARFF Publicly available Visibility: public Uploaded 04-10-2014 by Joaquin Vanschoren
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
  • artificial Data Science Machine Learning Statistics
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Author: Source: Unknown - Date unknown Please cite: The Friedman datasets are 80 artificially generated datasets originating from: J.H. Friedman (1999). Stochastic Gradient Boosting The dataset names are coded as "fri_colinearintydegree_samplenumber_featurenumber". Friedman is the one of the most used functions for data generation (Friedman, 1999). Friedman functions include both linear and non-linear relations between input and output, and a normalized noise (e) is added to the output. The Friedman function is as follows: y=10*sin(pi*x1*x2)+20*(x3-0.5)^2=10*X4+5*X5+e In the original Friedman function, there are 5 features for input. To measure the effects of non-related features, additional features are added to the datasets. These added features are independent from the output. However, to measure the algorithm's robustness to the colinearity, the datasets are generated with 5 different colinearity degrees. The colinearity degrees is the number of features depending on other features. The generated Friedman dataset's parameters and values are given below: The number of features: 5 10 25 50 100 (only the first 5 features are related to the output. The rest are completely random) The number of samples: 100 250 500 1000 Colinearity degrees: 0 1 2 3 4 For the datasets with colinearity degree 4, the numbers of features are generated as 10, 25, 50 and 100. The other datasets have 5, 10, 25 and 50 features. As a result, 80 artificial datasets are generated by (4 different feature number * 4 different sample number * 5 different colinearity degree) The last attribute in each file is the target.

101 features

oz101 (target)numeric250 unique values
0 missing
oz1numeric250 unique values
0 missing
oz2numeric250 unique values
0 missing
oz3numeric250 unique values
0 missing
oz4numeric250 unique values
0 missing
oz5numeric250 unique values
0 missing
oz6numeric250 unique values
0 missing
oz7numeric250 unique values
0 missing
oz8numeric250 unique values
0 missing
oz9numeric250 unique values
0 missing
oz10numeric250 unique values
0 missing
oz11numeric250 unique values
0 missing
oz12numeric250 unique values
0 missing
oz13numeric250 unique values
0 missing
oz14numeric250 unique values
0 missing
oz15numeric250 unique values
0 missing
oz16numeric250 unique values
0 missing
oz17numeric250 unique values
0 missing
oz18numeric250 unique values
0 missing
oz19numeric250 unique values
0 missing
oz20numeric250 unique values
0 missing
oz21numeric250 unique values
0 missing
oz22numeric250 unique values
0 missing
oz23numeric250 unique values
0 missing
oz24numeric250 unique values
0 missing
oz25numeric250 unique values
0 missing
oz26numeric250 unique values
0 missing
oz27numeric250 unique values
0 missing
oz28numeric250 unique values
0 missing
oz29numeric250 unique values
0 missing
oz30numeric250 unique values
0 missing
oz31numeric250 unique values
0 missing
oz32numeric250 unique values
0 missing
oz33numeric250 unique values
0 missing
oz34numeric250 unique values
0 missing
oz35numeric250 unique values
0 missing
oz36numeric250 unique values
0 missing
oz37numeric250 unique values
0 missing
oz38numeric250 unique values
0 missing
oz39numeric250 unique values
0 missing
oz40numeric250 unique values
0 missing
oz41numeric250 unique values
0 missing
oz42numeric250 unique values
0 missing
oz43numeric250 unique values
0 missing
oz44numeric250 unique values
0 missing
oz45numeric250 unique values
0 missing
oz46numeric250 unique values
0 missing
oz47numeric250 unique values
0 missing
oz48numeric250 unique values
0 missing
oz49numeric250 unique values
0 missing
oz50numeric250 unique values
0 missing
oz51numeric250 unique values
0 missing
oz52numeric250 unique values
0 missing
oz53numeric250 unique values
0 missing
oz54numeric250 unique values
0 missing
oz55numeric250 unique values
0 missing
oz56numeric250 unique values
0 missing
oz57numeric250 unique values
0 missing
oz58numeric250 unique values
0 missing
oz59numeric250 unique values
0 missing
oz60numeric250 unique values
0 missing
oz61numeric250 unique values
0 missing
oz62numeric250 unique values
0 missing
oz63numeric250 unique values
0 missing
oz64numeric250 unique values
0 missing
oz65numeric250 unique values
0 missing
oz66numeric250 unique values
0 missing
oz67numeric250 unique values
0 missing
oz68numeric250 unique values
0 missing
oz69numeric250 unique values
0 missing
oz70numeric250 unique values
0 missing
oz71numeric250 unique values
0 missing
oz72numeric250 unique values
0 missing
oz73numeric250 unique values
0 missing
oz74numeric250 unique values
0 missing
oz75numeric250 unique values
0 missing
oz76numeric250 unique values
0 missing
oz77numeric250 unique values
0 missing
oz78numeric250 unique values
0 missing
oz79numeric250 unique values
0 missing
oz80numeric250 unique values
0 missing
oz81numeric250 unique values
0 missing
oz82numeric250 unique values
0 missing
oz83numeric250 unique values
0 missing
oz84numeric250 unique values
0 missing
oz85numeric250 unique values
0 missing
oz86numeric250 unique values
0 missing
oz87numeric250 unique values
0 missing
oz88numeric250 unique values
0 missing
oz89numeric250 unique values
0 missing
oz90numeric250 unique values
0 missing
oz91numeric250 unique values
0 missing
oz92numeric250 unique values
0 missing
oz93numeric250 unique values
0 missing
oz94numeric250 unique values
0 missing
oz95numeric250 unique values
0 missing
oz96numeric250 unique values
0 missing
oz97numeric250 unique values
0 missing
oz98numeric250 unique values
0 missing
oz99numeric250 unique values
0 missing
oz100numeric250 unique values
0 missing

107 properties

250
Number of instances (rows) of the dataset.
101
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
101
Number of numeric attributes.
0
Number of nominal attributes.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
0
Percentage of binary attributes.
1
Second quartile (Median) of standard deviation of attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.4
Number of attributes divided by the number of instances.
The maximum number of distinct values among attributes of the nominal type.
-0.26
Minimum skewness among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
1.62
Maximum skewness among attributes of the numeric type.
1
Minimum standard deviation of attributes of the numeric type.
0
Percentage of missing values.
-1.15
Third quartile of kurtosis among attributes of the numeric type.
-0.13
Average class difference between consecutive instances.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
1
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
100
Percentage of numeric attributes.
0
Third quartile of means among attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
0
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001
-1.12
Mean kurtosis among attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes
First quartile of entropy among attributes.
0.07
Third quartile of skewness among attributes of the numeric type.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0
Mean of means among attributes of the numeric type.
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
-1.25
First quartile of kurtosis among attributes of the numeric type.
1
Third quartile of standard deviation of attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001
Average mutual information between the nominal attributes and the target attribute.
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes
-0
First quartile of means among attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
Average number of distinct values among the attributes of the nominal type.
-0.06
First quartile of skewness among attributes of the numeric type.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Standard deviation of the number of distinct values among attributes of the nominal type.
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
0.03
Mean skewness among attributes of the numeric type.
1
First quartile of standard deviation of attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk
Percentage of instances belonging to the most frequent class.
1
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
-1.2
Second quartile (Median) of kurtosis among attributes of the numeric type.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
Entropy of the target attribute values.
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk
Maximum entropy among attributes.
-1.4
Minimum kurtosis among attributes of the numeric type.
0
Second quartile (Median) of means among attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump
2.55
Maximum kurtosis among attributes of the numeric type.
-0
Minimum of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump
0
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Second quartile (Median) of skewness among attributes of the numeric type.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump

13 tasks

0 runs - estimation_procedure: 10-fold Crossvalidation - evaluation_measure: mean_absolute_error - target_feature: oz101
0 runs - estimation_procedure: 10 times 10-fold Crossvalidation - evaluation_measure: mean_absolute_error - target_feature: oz101
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task