Data
pollen

pollen

active ARFF Publicly available Visibility: public Uploaded 29-09-2014 by Joaquin Vanschoren
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Author: Source: Unknown - Date unknown Please cite: This dataset is synthetic. It was generated by David Coleman at RCA Laboratories in Princeton, N.J. For convenience, we will refer to it as the POLLEN DATA. The first three variables are the lengths of geometric features observed sampled pollen grains - in the x, y, and z dimensions: a "ridge" along x, a "nub" in the y direction, and a "crack" in along the z dimension. The fourth variable is pollen grain weight, and the fifth is density. There are 3848 observations, in random order (for people whose software packages cannot handle this much data, it is recommended that the data be sampled). The dataset is broken up into eight pieces, POLLEN1.DAT - POLLEN8.DAT, each with 481 observations. We will call the variables: 1. RIDGE 2. NUB 3. CRACK 4. WEIGHT 5. DENSITY 6. OBSERVATION NUMBER (for convenience) The data analyst is advised that there is more than one "feature" to these data. Each feature can be observed through various graphical techniques, but analytic methods, as well, can help "crack" the dataset. Additional Info: I no longer have the description handed out during the JSM, but can tell you how I generated the data, in minitab. 1. Part A was generated: 5000 (I think) 5-variable, uncorrelated, i.i.d. Gaussian observations. 2. To get part B, I duplicated part A, then reversed the sign on the observations for 3 of the 5 variables. 3. Part B was appended to Part A. 4. The order of the observations was randomized. 5. While waiting for my tardy car-pool companion, I took a piece of graph paper, and figured out a dot-matrix representation of the word, "EUREKA." I then added these observations to the "center" of the datatset. 6. The data were scaled, by variable (something like 1,3,5,7,11). 7. The data were rotated, then translated. 8. A few points in space within the datacloud were chosen as ellipsoid centers, then for each center, all observations within a (scaled and rotated) radius were identified, and eliminated - to form ellipsoidal voids. 9. The variables were given entirely ficticious names. FYI, only the folks at Bell Labs, Murray Hill, found everything, including the voids. Hope this is helpful! References: Becker, R.A., Denby, L., McGill, R., and Wilks, A. (1986). Datacryptanalysis: A Case Study. Proceedings of the Section on Statistical Graphics, 92-97. Slomka, M. (1986). The Analysis of a Synthetic Data Set. Proceedings of the Section on Statistical Graphics, 113-116. Information about the dataset CLASSTYPE: numeric CLASSINDEX: none specific

5 features

DENSITY (target)numeric3784 unique values
0 missing
RIDGEnumeric3809 unique values
0 missing
NUBnumeric3811 unique values
0 missing
CRACKnumeric3816 unique values
0 missing
WEIGHTnumeric3826 unique values
0 missing
OBSERVATION_NUMBER (ignore)numeric3848 unique values
0 missing

107 properties

3848
Number of instances (rows) of the dataset.
5
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
5
Number of numeric attributes.
0
Number of nominal attributes.
0.02
Mean skewness among attributes of the numeric type.
4.17
First quartile of standard deviation of attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
6.53
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
Percentage of instances belonging to the most frequent class.
Minimal entropy among attributes.
-0.16
Second quartile (Median) of kurtosis among attributes of the numeric type.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
Entropy of the target attribute values.
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk
Number of instances belonging to the most frequent class.
-0.31
Minimum kurtosis among attributes of the numeric type.
0
Second quartile (Median) of means among attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump
Maximum entropy among attributes.
-0
Minimum of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump
0.2
Maximum kurtosis among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0.07
Second quartile (Median) of skewness among attributes of the numeric type.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump
0
Maximum of means among attributes of the numeric type.
The minimal number of distinct values among attributes of the nominal type.
0
Percentage of binary attributes.
6.4
Second quartile (Median) of standard deviation of attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0
Number of attributes divided by the number of instances.
Maximum mutual information between the nominal attributes and the target attribute.
-0.13
Minimum skewness among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
The maximum number of distinct values among attributes of the nominal type.
3.14
Minimum standard deviation of attributes of the numeric type.
0
Percentage of missing values.
0.07
Third quartile of kurtosis among attributes of the numeric type.
-2.56
Average class difference between consecutive instances.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0.11
Maximum skewness among attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
100
Percentage of numeric attributes.
0
Third quartile of means among attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
10.04
Maximum standard deviation of attributes of the numeric type.
Number of instances belonging to the least frequent class.
0
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001
Average entropy of the attributes.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes
First quartile of entropy among attributes.
0.11
Third quartile of skewness among attributes of the numeric type.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001
-0.1
Mean kurtosis among attributes of the numeric type.
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
-0.23
First quartile of kurtosis among attributes of the numeric type.
8.96
Third quartile of standard deviation of attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0
Mean of means among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes
-0
First quartile of means among attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
Average number of distinct values among the attributes of the nominal type.
-0.09
First quartile of skewness among attributes of the numeric type.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Standard deviation of the number of distinct values among attributes of the nominal type.
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001

14 tasks

0 runs - estimation_procedure: 10-fold Crossvalidation - evaluation_measure: mean_absolute_error - target_feature: DENSITY
0 runs - estimation_procedure: 10 times 10-fold Crossvalidation - evaluation_measure: mean_absolute_error - target_feature: DENSITY
0 runs - estimation_procedure: 33% Holdout set - target_feature: DENSITY
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task