Data
dataset_credit-g

dataset_credit-g

active ARFF CC BY 4.0 Visibility: public Uploaded 13-12-2024 by Sebastian Silva Ruiz
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Financial dataset for automl benchmark. Name = dataset_credit-g, target = class

21 features

class (target)nominal2 unique values
0 missing
checking_statusnumeric4 unique values
0 missing
durationnumeric33 unique values
0 missing
credit_historynumeric5 unique values
0 missing
purposenumeric10 unique values
0 missing
credit_amountnumeric921 unique values
0 missing
savings_statusnumeric5 unique values
0 missing
employmentnumeric5 unique values
0 missing
installment_commitmentnumeric4 unique values
0 missing
personal_statusnumeric4 unique values
0 missing
other_partiesnumeric3 unique values
0 missing
residence_sincenumeric4 unique values
0 missing
property_magnitudenumeric4 unique values
0 missing
agenumeric53 unique values
0 missing
other_payment_plansnumeric3 unique values
0 missing
housingnumeric3 unique values
0 missing
existing_creditsnumeric4 unique values
0 missing
jobnumeric4 unique values
0 missing
num_dependentsnumeric2 unique values
0 missing
own_telephonenumeric2 unique values
0 missing
foreign_workernumeric2 unique values
0 missing

19 properties

1000
Number of instances (rows) of the dataset.
21
Number of attributes (columns) of the dataset.
2
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
20
Number of numeric attributes.
1
Number of nominal attributes.
70
Percentage of instances belonging to the most frequent class.
4.76
Percentage of nominal attributes.
700
Number of instances belonging to the most frequent class.
30
Percentage of instances belonging to the least frequent class.
300
Number of instances belonging to the least frequent class.
1
Number of binary attributes.
4.76
Percentage of binary attributes.
0
Percentage of instances having missing values.
0.57
Average class difference between consecutive instances.
0
Percentage of missing values.
0.02
Number of attributes divided by the number of instances.
95.24
Percentage of numeric attributes.

0 tasks

Define a new task