Data
Is_fraud

Is_fraud

active ARFF CC BY 4.0 Visibility: public Uploaded 06-12-2024 by Anna Wiewer
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
A fraud detection dataset for binary classification. The target variable is 'is_fraud', indicating whether a transaction is fraudulent.

21 features

is_fraud (target)nominal2 unique values
0 missing
cc_numnumeric668 unique values
0 missing
merchantnumeric476 unique values
0 missing
categorynumeric14 unique values
0 missing
amtnumeric4147 unique values
0 missing
gendernumeric2 unique values
0 missing
statenumeric48 unique values
0 missing
zipnumeric664 unique values
0 missing
latnumeric663 unique values
0 missing
longnumeric664 unique values
0 missing
city_popnumeric619 unique values
0 missing
jobnumeric349 unique values
0 missing
unix_timenumeric5135 unique values
0 missing
merch_latnumeric5227 unique values
0 missing
merch_longnumeric5227 unique values
0 missing
trans_yearnumeric1 unique values
0 missing
trans_monthnumeric2 unique values
0 missing
trans_daynumeric4 unique values
0 missing
trans_hournumeric24 unique values
0 missing
trans_minutenumeric60 unique values
0 missing
trans_secondnumeric60 unique values
0 missing

19 properties

5227
Number of instances (rows) of the dataset.
21
Number of attributes (columns) of the dataset.
2
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
20
Number of numeric attributes.
1
Number of nominal attributes.
4.76
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
0.99
Average class difference between consecutive instances.
95.24
Percentage of numeric attributes.
0
Number of attributes divided by the number of instances.
4.76
Percentage of nominal attributes.
99.69
Percentage of instances belonging to the most frequent class.
5211
Number of instances belonging to the most frequent class.
0.31
Percentage of instances belonging to the least frequent class.
16
Number of instances belonging to the least frequent class.
1
Number of binary attributes.

1 tasks

0 runs - estimation_procedure: 10-fold Crossvalidation - target_feature: is_fraud
Define a new task