Data
OpenML
Help
Sign in
×
Sign in
No account? Join OpenML
Forgot password
×
JavaScript is required to properly view the contents of this page!
OpenML
Explore
Data
Task
Flow
Run
Study
Task type
Measure
People
Help
Blog
Contact
Please cite us
Price_Trend_Classification
ARFF
CSV
JSON
XML
RDF
Price_Trend_Classification
active
ARFF
CC BY 4.0
Visibility: public
Uploaded 21-11-2024 by
Yayun Li
0 likes
downloaded by 0 people , 0 total downloads
0 issues
0 downvotes
Add tag
Issue
#Downvotes for this reason
By
Loading wiki
Help us complete this description
Edit
Apple Price Trend prediction. The target variable 'target' is a categorical variable with 3 classes: bearish (0), bullish (1), and neutral (2). This is a multiclass classification task.
23 features
target
(target)
numeric
3 unique values
0 missing
open
numeric
2377 unique values
0 missing
high
numeric
2368 unique values
0 missing
low
numeric
2385 unique values
0 missing
close
numeric
2368 unique values
0 missing
volume
numeric
2508 unique values
0 missing
rsi_7
numeric
2510 unique values
0 missing
rsi_14
numeric
2510 unique values
0 missing
cci_7
numeric
2516 unique values
0 missing
cci_14
numeric
2516 unique values
0 missing
sma_50
numeric
2516 unique values
0 missing
ema_50
numeric
2516 unique values
0 missing
sma_100
numeric
2516 unique values
0 missing
ema_100
numeric
2516 unique values
0 missing
macd
numeric
2516 unique values
0 missing
bollinger
numeric
2516 unique values
0 missing
truerange
numeric
1975 unique values
0 missing
atr_7
numeric
2516 unique values
0 missing
atr_14
numeric
2516 unique values
0 missing
date_year
numeric
10 unique values
0 missing
date_month
numeric
12 unique values
0 missing
date_day
numeric
31 unique values
0 missing
date_weekday
numeric
5 unique values
0 missing
Show all 23 features
19 properties
NumberOfInstances
2516
Number of instances (rows) of the dataset.
NumberOfFeatures
23
Number of attributes (columns) of the dataset.
NumberOfClasses
0
Number of distinct values of the target attribute (if it is nominal).
NumberOfMissingValues
0
Number of missing values in the dataset.
NumberOfInstancesWithMissingValues
0
Number of instances with at least one value missing.
NumberOfNumericFeatures
23
Number of numeric attributes.
NumberOfSymbolicFeatures
0
Number of nominal attributes.
PercentageOfBinaryFeatures
0
Percentage of binary attributes.
PercentageOfInstancesWithMissingValues
0
Percentage of instances having missing values.
AutoCorrelation
0.17
Average class difference between consecutive instances.
PercentageOfMissingValues
0
Percentage of missing values.
Dimensionality
0.01
Number of attributes divided by the number of instances.
PercentageOfNumericFeatures
100
Percentage of numeric attributes.
MajorityClassPercentage
Percentage of instances belonging to the most frequent class.
PercentageOfSymbolicFeatures
0
Percentage of nominal attributes.
MajorityClassSize
Number of instances belonging to the most frequent class.
MinorityClassPercentage
Percentage of instances belonging to the least frequent class.
MinorityClassSize
Number of instances belonging to the least frequent class.
NumberOfBinaryFeatures
0
Number of binary attributes.
Show all 19 properties
2 tasks
Supervised Classification on Price_Trend_Classification
0 runs
- estimation_procedure: 10-fold Crossvalidation - target_feature: bad_flag
Supervised Classification on Price_Trend_Classification
0 runs
- estimation_procedure: 10-fold Crossvalidation - target_feature: target
Define a new task