Data
credit-approval

credit-approval

active ARFF CC BY 4.0 Visibility: public Uploaded 20-11-2024 by Sebastian Silva Ruiz
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Finantial dataset for automl benchmark. Dataset 29 with target column class

16 features

class (target)nominal2 unique values
0 missing
a1string3 unique values
0 missing
a2numeric349 unique values
12 missing
a3numeric215 unique values
0 missing
a4nominal3 unique values
6 missing
a5nominal3 unique values
6 missing
a6nominal14 unique values
9 missing
a7nominal9 unique values
9 missing
a8numeric132 unique values
0 missing
a9string2 unique values
0 missing
a10string2 unique values
0 missing
a11numeric23 unique values
0 missing
a12string2 unique values
0 missing
a13nominal3 unique values
0 missing
a14numeric170 unique values
13 missing
a15numeric240 unique values
0 missing

19 properties

690
Number of instances (rows) of the dataset.
16
Number of attributes (columns) of the dataset.
2
Number of distinct values of the target attribute (if it is nominal).
55
Number of missing values in the dataset.
27
Number of instances with at least one value missing.
6
Number of numeric attributes.
6
Number of nominal attributes.
6.25
Percentage of binary attributes.
3.91
Percentage of instances having missing values.
0.98
Average class difference between consecutive instances.
0.5
Percentage of missing values.
0.02
Number of attributes divided by the number of instances.
37.5
Percentage of numeric attributes.
55.51
Percentage of instances belonging to the most frequent class.
37.5
Percentage of nominal attributes.
383
Number of instances belonging to the most frequent class.
44.49
Percentage of instances belonging to the least frequent class.
307
Number of instances belonging to the least frequent class.
1
Number of binary attributes.

1 tasks

0 runs - estimation_procedure: 10-fold Crossvalidation - target_feature: class
Define a new task