Data
Customer_Churn_Classification_Nominal

Customer_Churn_Classification_Nominal

active ARFF CC BY 4.0 Visibility: public Uploaded 20-11-2024 by Anna Wiewer
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
An updated version of the Customer Churn dataset for binary classification. The target variable 'exited' is now treated as nominal with categories: 'not_churned' and 'churned'.

25 features

exited (target)nominal2 unique values
0 missing
surnamenumeric2349 unique values
0 missing
creditscorenumeric444 unique values
0 missing
agenumeric71 unique values
0 missing
tenurenumeric11 unique values
0 missing
balancenumeric10062 unique values
0 missing
numofproductsnumeric4 unique values
0 missing
hascrcardnumeric2 unique values
0 missing
isactivemembernumeric2 unique values
0 missing
estimatedsalarynumeric18580 unique values
0 missing
surname_tfidf_0numeric1006 unique values
0 missing
surname_tfidf_1numeric1006 unique values
0 missing
surname_tfidf_2numeric1006 unique values
0 missing
surname_tfidf_3numeric1006 unique values
0 missing
surname_tfidf_4numeric1006 unique values
0 missing
francenumeric2 unique values
0 missing
germanynumeric2 unique values
0 missing
spainnumeric2 unique values
0 missing
femalenumeric2 unique values
0 missing
malenumeric2 unique values
0 missing
mem__no__productsnumeric5 unique values
0 missing
cred_bal_salnumeric15596 unique values
0 missing
bal_salnumeric14789 unique values
0 missing
tenure_agenumeric410 unique values
0 missing
age_tenure_productnumeric364 unique values
0 missing

19 properties

35000
Number of instances (rows) of the dataset.
25
Number of attributes (columns) of the dataset.
2
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
24
Number of numeric attributes.
1
Number of nominal attributes.
4
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
0.67
Average class difference between consecutive instances.
96
Percentage of numeric attributes.
0
Number of attributes divided by the number of instances.
4
Percentage of nominal attributes.
78.87
Percentage of instances belonging to the most frequent class.
27603
Number of instances belonging to the most frequent class.
21.13
Percentage of instances belonging to the least frequent class.
7397
Number of instances belonging to the least frequent class.
1
Number of binary attributes.

1 tasks

0 runs - estimation_procedure: 10-fold Crossvalidation - target_feature: is_fraud
Define a new task