Data
OpenML
Help
Sign in
×
Sign in
No account? Join OpenML
Forgot password
×
JavaScript is required to properly view the contents of this page!
OpenML
Explore
Data
Task
Flow
Run
Study
Task type
Measure
People
Help
Blog
Contact
Please cite us
Customer_Churn_Classification_Nominal
ARFF
CSV
JSON
XML
RDF
Customer_Churn_Classification_Nominal
active
ARFF
CC BY 4.0
Visibility: public
Uploaded 20-11-2024 by
Anna Wiewer
0 likes
downloaded by 0 people , 0 total downloads
0 issues
0 downvotes
Add tag
Issue
#Downvotes for this reason
By
Loading wiki
Help us complete this description
Edit
An updated version of the Customer Churn dataset for binary classification. The target variable 'exited' is now treated as nominal with categories: 'not_churned' and 'churned'.
25 features
exited
(target)
nominal
2 unique values
0 missing
surname
numeric
2349 unique values
0 missing
creditscore
numeric
444 unique values
0 missing
age
numeric
71 unique values
0 missing
tenure
numeric
11 unique values
0 missing
balance
numeric
10062 unique values
0 missing
numofproducts
numeric
4 unique values
0 missing
hascrcard
numeric
2 unique values
0 missing
isactivemember
numeric
2 unique values
0 missing
estimatedsalary
numeric
18580 unique values
0 missing
surname_tfidf_0
numeric
1006 unique values
0 missing
surname_tfidf_1
numeric
1006 unique values
0 missing
surname_tfidf_2
numeric
1006 unique values
0 missing
surname_tfidf_3
numeric
1006 unique values
0 missing
surname_tfidf_4
numeric
1006 unique values
0 missing
france
numeric
2 unique values
0 missing
germany
numeric
2 unique values
0 missing
spain
numeric
2 unique values
0 missing
female
numeric
2 unique values
0 missing
male
numeric
2 unique values
0 missing
mem__no__products
numeric
5 unique values
0 missing
cred_bal_sal
numeric
15596 unique values
0 missing
bal_sal
numeric
14789 unique values
0 missing
tenure_age
numeric
410 unique values
0 missing
age_tenure_product
numeric
364 unique values
0 missing
Show all 25 features
19 properties
NumberOfInstances
35000
Number of instances (rows) of the dataset.
NumberOfFeatures
25
Number of attributes (columns) of the dataset.
NumberOfClasses
2
Number of distinct values of the target attribute (if it is nominal).
NumberOfMissingValues
0
Number of missing values in the dataset.
NumberOfInstancesWithMissingValues
0
Number of instances with at least one value missing.
NumberOfNumericFeatures
24
Number of numeric attributes.
NumberOfSymbolicFeatures
1
Number of nominal attributes.
PercentageOfBinaryFeatures
4
Percentage of binary attributes.
PercentageOfInstancesWithMissingValues
0
Percentage of instances having missing values.
PercentageOfMissingValues
0
Percentage of missing values.
AutoCorrelation
0.67
Average class difference between consecutive instances.
PercentageOfNumericFeatures
96
Percentage of numeric attributes.
Dimensionality
0
Number of attributes divided by the number of instances.
PercentageOfSymbolicFeatures
4
Percentage of nominal attributes.
MajorityClassPercentage
78.87
Percentage of instances belonging to the most frequent class.
MajorityClassSize
27603
Number of instances belonging to the most frequent class.
MinorityClassPercentage
21.13
Percentage of instances belonging to the least frequent class.
MinorityClassSize
7397
Number of instances belonging to the least frequent class.
NumberOfBinaryFeatures
1
Number of binary attributes.
Show all 19 properties
1 tasks
Supervised Classification on Customer_Churn_Classification_Nominal
0 runs
- estimation_procedure: 10-fold Crossvalidation - target_feature: is_fraud
Define a new task