Data
OpenML
Help
Sign in
×
Sign in
No account? Join OpenML
Forgot password
×
JavaScript is required to properly view the contents of this page!
OpenML
Explore
Data
Task
Flow
Run
Study
Task type
Measure
People
Help
Blog
Contact
Please cite us
Credit_Approval_Classification
ARFF
CSV
JSON
XML
RDF
Credit_Approval_Classification
active
ARFF
CC BY 4.0
Visibility: public
Uploaded 19-11-2024 by
Anna Wiewer
0 likes
downloaded by 0 people , 0 total downloads
0 issues
0 downvotes
Add tag
Issue
#Downvotes for this reason
By
Loading wiki
Help us complete this description
Edit
A dataset for binary classification of credit approval status. Features include customer demographics, financial attributes, and credit history. The target variable `class` indicates whether the credit is good or bad.
21 features
class
(target)
nominal
2 unique values
0 missing
checking_status
string
4 unique values
0 missing
duration
numeric
33 unique values
0 missing
credit_history
string
5 unique values
0 missing
purpose
string
10 unique values
0 missing
credit_amount
numeric
921 unique values
0 missing
savings_status
string
5 unique values
0 missing
employment
string
5 unique values
0 missing
installment_commitment
numeric
4 unique values
0 missing
personal_status
string
4 unique values
0 missing
other_parties
string
3 unique values
0 missing
residence_since
numeric
4 unique values
0 missing
property_magnitude
string
4 unique values
0 missing
age
numeric
53 unique values
0 missing
other_payment_plans
string
3 unique values
0 missing
housing
string
3 unique values
0 missing
existing_credits
numeric
4 unique values
0 missing
job
string
4 unique values
0 missing
num_dependents
numeric
2 unique values
0 missing
own_telephone
string
2 unique values
0 missing
foreign_worker
string
2 unique values
0 missing
Show all 21 features
19 properties
NumberOfInstances
1000
Number of instances (rows) of the dataset.
NumberOfFeatures
21
Number of attributes (columns) of the dataset.
NumberOfClasses
2
Number of distinct values of the target attribute (if it is nominal).
NumberOfMissingValues
0
Number of missing values in the dataset.
NumberOfInstancesWithMissingValues
0
Number of instances with at least one value missing.
NumberOfNumericFeatures
7
Number of numeric attributes.
NumberOfSymbolicFeatures
1
Number of nominal attributes.
PercentageOfBinaryFeatures
4.76
Percentage of binary attributes.
PercentageOfInstancesWithMissingValues
0
Percentage of instances having missing values.
AutoCorrelation
0.57
Average class difference between consecutive instances.
PercentageOfMissingValues
0
Percentage of missing values.
Dimensionality
0.02
Number of attributes divided by the number of instances.
PercentageOfNumericFeatures
33.33
Percentage of numeric attributes.
MajorityClassPercentage
70
Percentage of instances belonging to the most frequent class.
PercentageOfSymbolicFeatures
4.76
Percentage of nominal attributes.
MajorityClassSize
700
Number of instances belonging to the most frequent class.
MinorityClassPercentage
30
Percentage of instances belonging to the least frequent class.
MinorityClassSize
300
Number of instances belonging to the least frequent class.
NumberOfBinaryFeatures
1
Number of binary attributes.
Show all 19 properties
1 tasks
Supervised Classification on Credit_Approval_Classification
0 runs
- estimation_procedure: 10-fold Crossvalidation - target_feature: class
Define a new task