Data
Credit_Approval_Classification

Credit_Approval_Classification

active ARFF CC BY 4.0 Visibility: public Uploaded 19-11-2024 by Anna Wiewer
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
A dataset for binary classification of credit approval status. Features include customer demographics, financial attributes, and credit history. The target variable `class` indicates whether the credit is good or bad.

21 features

class (target)nominal2 unique values
0 missing
checking_statusstring4 unique values
0 missing
durationnumeric33 unique values
0 missing
credit_historystring5 unique values
0 missing
purposestring10 unique values
0 missing
credit_amountnumeric921 unique values
0 missing
savings_statusstring5 unique values
0 missing
employmentstring5 unique values
0 missing
installment_commitmentnumeric4 unique values
0 missing
personal_statusstring4 unique values
0 missing
other_partiesstring3 unique values
0 missing
residence_sincenumeric4 unique values
0 missing
property_magnitudestring4 unique values
0 missing
agenumeric53 unique values
0 missing
other_payment_plansstring3 unique values
0 missing
housingstring3 unique values
0 missing
existing_creditsnumeric4 unique values
0 missing
jobstring4 unique values
0 missing
num_dependentsnumeric2 unique values
0 missing
own_telephonestring2 unique values
0 missing
foreign_workerstring2 unique values
0 missing

19 properties

1000
Number of instances (rows) of the dataset.
21
Number of attributes (columns) of the dataset.
2
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
7
Number of numeric attributes.
1
Number of nominal attributes.
4.76
Percentage of binary attributes.
0
Percentage of instances having missing values.
0.57
Average class difference between consecutive instances.
0
Percentage of missing values.
0.02
Number of attributes divided by the number of instances.
33.33
Percentage of numeric attributes.
70
Percentage of instances belonging to the most frequent class.
4.76
Percentage of nominal attributes.
700
Number of instances belonging to the most frequent class.
30
Percentage of instances belonging to the least frequent class.
300
Number of instances belonging to the least frequent class.
1
Number of binary attributes.

1 tasks

0 runs - estimation_procedure: 10-fold Crossvalidation - target_feature: class
Define a new task