Data
Customer_Churn_Classification

Customer_Churn_Classification

active ARFF CC BY 4.0 Visibility: public Uploaded 19-11-2024 by Anna Wiewer
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains customer data for a classification task to predict churn based on behavioral and demographic features. The target variable 'exited' indicates whether a customer has churned (1) or not (0).

25 features

exited (target)nominal2 unique values
0 missing
surnamenumeric2932 unique values
0 missing
creditscorenumeric460 unique values
0 missing
agenumeric73 unique values
0 missing
tenurenumeric11 unique values
0 missing
balancenumeric30239 unique values
0 missing
numofproductsnumeric4 unique values
0 missing
hascrcardnumeric2 unique values
0 missing
isactivemembernumeric2 unique values
0 missing
estimatedsalarynumeric55581 unique values
0 missing
surname_tfidf_0numeric1007 unique values
0 missing
surname_tfidf_1numeric1007 unique values
0 missing
surname_tfidf_2numeric1007 unique values
0 missing
surname_tfidf_3numeric1007 unique values
0 missing
surname_tfidf_4numeric1007 unique values
0 missing
francenumeric2 unique values
0 missing
germanynumeric2 unique values
0 missing
spainnumeric2 unique values
0 missing
femalenumeric2 unique values
0 missing
malenumeric2 unique values
0 missing
mem__no__productsnumeric5 unique values
0 missing
cred_bal_salnumeric72043 unique values
0 missing
bal_salnumeric64461 unique values
0 missing
tenure_agenumeric444 unique values
0 missing
age_tenure_productnumeric389 unique values
0 missing

19 properties

175028
Number of instances (rows) of the dataset.
25
Number of attributes (columns) of the dataset.
2
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
24
Number of numeric attributes.
1
Number of nominal attributes.
4
Percentage of binary attributes.
0
Percentage of instances having missing values.
0.67
Average class difference between consecutive instances.
0
Percentage of missing values.
0
Number of attributes divided by the number of instances.
96
Percentage of numeric attributes.
78.89
Percentage of instances belonging to the most frequent class.
4
Percentage of nominal attributes.
138071
Number of instances belonging to the most frequent class.
21.11
Percentage of instances belonging to the least frequent class.
36957
Number of instances belonging to the least frequent class.
1
Number of binary attributes.

0 tasks

Define a new task