Data
insurance_company

insurance_company

active ARFF CC BY 4.0 Visibility: public Uploaded 23-07-2024 by Bruno Belucci Teixeira
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
From original source: ----- Additional Information Information about customers consists of 86 variables and includes product usage data and socio-demographic data derived from zip area codes. The data was supplied by the Dutch data mining company Sentient Machine Research and is based on a real world business problem. The training set contains over 5000 descriptions of customers, including the information of whether or not they have a caravan insurance policy. A test set contains 4000 customers of whom only the organisers know if they have a caravan insurance policy. The data dictionary (http://kdd.ics.uci.edu/databases/tic/dictionary.txt) describes the variables used and their values. Note: All the variables starting with M are zipcode variables. They give information on the distribution of that variable, e.g. Rented house, in the zipcode area of the customer. One instance per line with tab delimited fields. TICDATA2000.txt: Dataset to train and validate prediction models and build a description (5822 customer records). Each record consists of 86 attributes, containing sociodemographic data (attribute 1-43) and product ownership (attributes 44-86).The sociodemographic data is derived from zip codes. All customers living in areas with the same zip code have the same sociodemographic attributes. Attribute 86, "CARAVAN:Number of mobile home policies", is the target variable. TICEVAL2000.txt: Dataset for predictions (4000 customer records). It has the same format as TICDATA2000.txt, only the target is missing. Participants are supposed to return the list of predicted targets only. All datasets are in tab delimited format. The meaning of the attributes and attribute values is given below. TICTGTS2000.txt Targets for the evaluation set. Has Missing Values? No -----

86 features

target (target)nominal2 unique values
0 missing
0nominal40 unique values
0 missing
1numeric9 unique values
0 missing
2numeric6 unique values
0 missing
3nominal6 unique values
0 missing
4nominal10 unique values
0 missing
5nominal10 unique values
0 missing
6nominal10 unique values
0 missing
7nominal6 unique values
0 missing
8nominal10 unique values
0 missing
9nominal10 unique values
0 missing
10nominal8 unique values
0 missing
11nominal10 unique values
0 missing
12nominal10 unique values
0 missing
13nominal10 unique values
0 missing
14nominal10 unique values
0 missing
15nominal10 unique values
0 missing
16nominal10 unique values
0 missing
17nominal10 unique values
0 missing
18nominal10 unique values
0 missing
19nominal6 unique values
0 missing
20nominal10 unique values
0 missing
21nominal10 unique values
0 missing
22nominal10 unique values
0 missing
23nominal10 unique values
0 missing
24nominal10 unique values
0 missing
25nominal10 unique values
0 missing
26nominal10 unique values
0 missing
27nominal10 unique values
0 missing
28nominal10 unique values
0 missing
29nominal10 unique values
0 missing
30nominal10 unique values
0 missing
31nominal10 unique values
0 missing
32nominal9 unique values
0 missing
33nominal10 unique values
0 missing
34nominal10 unique values
0 missing
35nominal10 unique values
0 missing
36nominal10 unique values
0 missing
37nominal10 unique values
0 missing
38nominal10 unique values
0 missing
39nominal10 unique values
0 missing
40nominal9 unique values
0 missing
41nominal10 unique values
0 missing
42nominal8 unique values
0 missing
43nominal4 unique values
0 missing
44nominal7 unique values
0 missing
45nominal5 unique values
0 missing
46nominal7 unique values
0 missing
47nominal4 unique values
0 missing
48nominal6 unique values
0 missing
49nominal5 unique values
0 missing
50nominal6 unique values
0 missing
51nominal6 unique values
0 missing
52nominal6 unique values
0 missing
53nominal6 unique values
0 missing
54nominal10 unique values
0 missing
55nominal7 unique values
0 missing
56nominal3 unique values
0 missing
57nominal5 unique values
0 missing
58nominal9 unique values
0 missing
59nominal4 unique values
0 missing
60nominal7 unique values
0 missing
61nominal2 unique values
0 missing
62nominal7 unique values
0 missing
63nominal5 unique values
0 missing
64numeric3 unique values
0 missing
65numeric3 unique values
0 missing
66numeric2 unique values
0 missing
67numeric9 unique values
0 missing
68numeric6 unique values
0 missing
69numeric5 unique values
0 missing
70numeric5 unique values
0 missing
71numeric4 unique values
0 missing
72numeric7 unique values
0 missing
73numeric6 unique values
0 missing
74numeric4 unique values
0 missing
75numeric7 unique values
0 missing
76numeric2 unique values
0 missing
77numeric2 unique values
0 missing
78numeric3 unique values
0 missing
79numeric8 unique values
0 missing
80numeric2 unique values
0 missing
81numeric3 unique values
0 missing
82numeric5 unique values
0 missing
83numeric3 unique values
0 missing
84numeric3 unique values
0 missing

19 properties

9822
Number of instances (rows) of the dataset.
86
Number of attributes (columns) of the dataset.
2
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
23
Number of numeric attributes.
63
Number of nominal attributes.
2.33
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
0.89
Average class difference between consecutive instances.
26.74
Percentage of numeric attributes.
0.01
Number of attributes divided by the number of instances.
73.26
Percentage of nominal attributes.
94.03
Percentage of instances belonging to the most frequent class.
9236
Number of instances belonging to the most frequent class.
5.97
Percentage of instances belonging to the least frequent class.
586
Number of instances belonging to the least frequent class.
2
Number of binary attributes.

1 tasks

0 runs - estimation_procedure: 10-fold Crossvalidation - target_feature: target
Define a new task