Data
mabbob_ela_as_2d_regression_DiagonalCMA

mabbob_ela_as_2d_regression_DiagonalCMA

active ARFF CC-BY Visibility: public Uploaded 10-07-2024 by Olaf Mersmann
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Algorithm performane prediction problem on 1120 2d MA-BBOB test problems using ELA features to learn which of five algorithms has the highest AUCC.

46 features

DiagonalCMA (target)numeric1118 unique values
0 missing
ela_meta.lin_simple.adj_r2numeric1117 unique values
0 missing
ela_meta.lin_simple.interceptnumeric1117 unique values
0 missing
ela_meta.lin_simple.coef.minnumeric1116 unique values
0 missing
ela_meta.lin_simple.coef.maxnumeric1116 unique values
0 missing
ela_meta.lin_simple.coef.max_by_minnumeric1117 unique values
0 missing
ela_meta.lin_w_interact.adj_r2numeric1116 unique values
0 missing
ela_meta.quad_simple.adj_r2numeric1116 unique values
0 missing
ela_meta.quad_simple.condnumeric1118 unique values
0 missing
ela_meta.quad_w_interact.adj_r2numeric1116 unique values
0 missing
ela_distr.skewnessnumeric1118 unique values
0 missing
ela_distr.kurtosisnumeric1118 unique values
0 missing
ela_distr.number_of_peaksnumeric29 unique values
0 missing
ela_level.mmce_lda_10numeric613 unique values
0 missing
ela_level.mmce_qda_10numeric744 unique values
0 missing
ela_level.lda_qda_10numeric1062 unique values
0 missing
ela_level.mmce_lda_25numeric830 unique values
0 missing
ela_level.mmce_qda_25numeric892 unique values
0 missing
ela_level.lda_qda_25numeric1100 unique values
0 missing
ela_level.mmce_lda_50numeric1012 unique values
0 missing
ela_level.mmce_qda_50numeric949 unique values
0 missing
ela_level.lda_qda_50numeric1099 unique values
0 missing
nbc.nn_nb.sd_rationumeric1116 unique values
0 missing
nbc.nn_nb.mean_rationumeric1116 unique values
0 missing
nbc.nn_nb.cornumeric1116 unique values
0 missing
nbc.dist_ratio.coeff_varnumeric1116 unique values
0 missing
nbc.nb_fitness.cornumeric1118 unique values
0 missing
disp.ratio_mean_02numeric1104 unique values
0 missing
disp.ratio_mean_05numeric1112 unique values
0 missing
disp.ratio_mean_10numeric1114 unique values
0 missing
disp.ratio_mean_25numeric1114 unique values
0 missing
disp.ratio_median_02numeric1100 unique values
0 missing
disp.ratio_median_05numeric1112 unique values
0 missing
disp.ratio_median_10numeric1114 unique values
0 missing
disp.ratio_median_25numeric1114 unique values
0 missing
disp.diff_mean_02numeric1104 unique values
0 missing
disp.diff_mean_05numeric1112 unique values
0 missing
disp.diff_mean_10numeric1114 unique values
0 missing
disp.diff_mean_25numeric1114 unique values
0 missing
disp.diff_median_02numeric1100 unique values
0 missing
disp.diff_median_05numeric1112 unique values
0 missing
disp.diff_median_10numeric1114 unique values
0 missing
disp.diff_median_25numeric1114 unique values
0 missing
ic.h_maxnumeric1116 unique values
0 missing
ic.eps_snumeric430 unique values
0 missing
ic.m0numeric999 unique values
0 missing

19 properties

1120
Number of instances (rows) of the dataset.
46
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
46
Number of numeric attributes.
0
Number of nominal attributes.
0
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
0.75
Average class difference between consecutive instances.
100
Percentage of numeric attributes.
0.04
Number of attributes divided by the number of instances.
0
Percentage of nominal attributes.
Percentage of instances belonging to the most frequent class.
Number of instances belonging to the most frequent class.
Percentage of instances belonging to the least frequent class.
Number of instances belonging to the least frequent class.
0
Number of binary attributes.

0 tasks

Define a new task