Data
FRED-QD

FRED-QD

active ARFF Creative Commons Attribution 4.0 International Visibility: public Uploaded 01-07-2024 by Bruno Belucci Teixeira
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Quarterly Database for Macroeconomic Research From original website: ----- FRED-MD and FRED-QD are large macroeconomic databases designed for the empirical analysis of 'big data'. The datasets of monthly and quarterly observations mimic the coverage of datasets already used in the literature, but they add three appealing features. They are updated in real-time through the FRED database. They are publicly accessible, facilitating the replication of empirical work. And they relieve the researcher of the task of incorporating data changes and revisions (a task accomplished by the data desk at the Federal Reserve Bank of St. Louis). The accompanying papers shows that factors extracted from the FRED-MD and FRED-QD datasets share comparable information content to various vintages of so-called Stock-Watson datasets. These factor estimates are shown to be useful for forecasting a wide range of macroeconomic series. In addition, we find that diffusion indexes constructed as the partial sum of the factor estimates can potentially be useful for the study of business cycle chronology. ----- We used the file 2024-05.csv for quarterly data and performed some preprocessing. There are 204 columns: id_series: The id of the time series. date: The date of the time series in the format "%Y-%m-%d". time_step: The time step on the time series. value_X (X from 0 to 200): The values of the time series, which will be used for the forecasting task. Preprocessing: 1 - We dropped the first line (factor) and transformed each column following the "Tranform" code available in the second line of the file and specified in the original paper which are: 1 - no transformation; 2 - Delta(xt); 3 - Delta^2(xt); 4 - log(xt); 5 - Delta(log(xt)); 6 - Delta^2(log(xt)); 7 - Delta(xt/xt-1 - 1.0) 2 - Dropped first 3 rows to get rid of NaNs due to the transformations and last row to only consider dates until 2023 (there are some missing values for 2024). 3 - Standardize the 'sasdate' column to the format %Y-%m-%d and renamed it to 'date'. 4 - Dropped columns that only have values starting later than 1959-09-01 (44 of 245 columns). 5 - Created column 'id_series', with value 0, there is only one multivariate series. 6 - Ensured that there are no missing dates and that they are evenly spaced (quarterly). 7 - Created column 'time_step' with increasing values of the time_step for the time series. 8 - Renamed columns to 'value_X' with X from 0 to 200. 9 - Casted 'date' to str, 'time_step' to int, 'value_0' to float, and defined 'id_series' and 'covariate_0' as 'category'.

204 features

datestring258 unique values
0 missing
id_seriesnominal1 unique values
0 missing
value_0numeric258 unique values
0 missing
value_1numeric258 unique values
0 missing
value_2numeric258 unique values
0 missing
value_3numeric258 unique values
0 missing
value_4numeric258 unique values
0 missing
value_5numeric258 unique values
0 missing
value_6numeric258 unique values
0 missing
value_7numeric258 unique values
0 missing
value_8numeric258 unique values
0 missing
value_9numeric258 unique values
0 missing
value_10numeric35 unique values
0 missing
value_11numeric258 unique values
0 missing
value_12numeric153 unique values
0 missing
value_13numeric258 unique values
0 missing
value_14numeric258 unique values
0 missing
value_15numeric258 unique values
0 missing
value_16numeric258 unique values
0 missing
value_17numeric258 unique values
0 missing
value_18numeric258 unique values
0 missing
value_19numeric258 unique values
0 missing
value_20numeric258 unique values
0 missing
value_21numeric258 unique values
0 missing
value_22numeric258 unique values
0 missing
value_23numeric258 unique values
0 missing
value_24numeric258 unique values
0 missing
value_25numeric258 unique values
0 missing
value_26numeric258 unique values
0 missing
value_27numeric258 unique values
0 missing
value_28numeric258 unique values
0 missing
value_29numeric258 unique values
0 missing
value_30numeric258 unique values
0 missing
value_31numeric258 unique values
0 missing
value_32numeric258 unique values
0 missing
value_33numeric258 unique values
0 missing
value_34numeric258 unique values
0 missing
value_35numeric258 unique values
0 missing
value_36numeric258 unique values
0 missing
value_37numeric258 unique values
0 missing
value_38numeric258 unique values
0 missing
value_39numeric258 unique values
0 missing
value_40numeric258 unique values
0 missing
value_41numeric258 unique values
0 missing
value_42numeric258 unique values
0 missing
value_43numeric258 unique values
0 missing
value_44numeric258 unique values
0 missing
value_45numeric258 unique values
0 missing
value_46numeric256 unique values
0 missing
value_47numeric258 unique values
0 missing
value_48numeric258 unique values
0 missing
value_49numeric258 unique values
0 missing
value_50numeric258 unique values
0 missing
value_51numeric254 unique values
0 missing
value_52numeric257 unique values
0 missing
value_53numeric258 unique values
0 missing
value_54numeric258 unique values
0 missing
value_55numeric80 unique values
0 missing
value_56numeric104 unique values
0 missing
value_57numeric258 unique values
0 missing
value_58numeric258 unique values
0 missing
value_59numeric160 unique values
0 missing
value_60numeric110 unique values
0 missing
value_61numeric97 unique values
0 missing
value_62numeric258 unique values
0 missing
value_63numeric258 unique values
0 missing
value_64numeric258 unique values
0 missing
value_65numeric258 unique values
0 missing
value_66numeric258 unique values
0 missing
value_67numeric258 unique values
0 missing
value_68numeric258 unique values
0 missing
value_69numeric79 unique values
0 missing
value_70numeric73 unique values
0 missing
value_71numeric250 unique values
0 missing
value_72numeric258 unique values
0 missing
value_73numeric258 unique values
0 missing
value_74numeric257 unique values
0 missing
value_75numeric254 unique values
0 missing
value_76numeric258 unique values
0 missing
value_77numeric257 unique values
0 missing
value_78numeric258 unique values
0 missing
value_79numeric258 unique values
0 missing
value_80numeric258 unique values
0 missing
value_81numeric258 unique values
0 missing
value_82numeric258 unique values
0 missing
value_83numeric257 unique values
0 missing
value_84numeric258 unique values
0 missing
value_85numeric258 unique values
0 missing
value_86numeric258 unique values
0 missing
value_87numeric258 unique values
0 missing
value_88numeric257 unique values
0 missing
value_89numeric258 unique values
0 missing
value_90numeric257 unique values
0 missing
value_91numeric257 unique values
0 missing
value_92numeric258 unique values
0 missing
value_93numeric258 unique values
0 missing
value_94numeric258 unique values
0 missing
value_95numeric258 unique values
0 missing
value_96numeric258 unique values
0 missing
value_97numeric258 unique values
0 missing
value_98numeric258 unique values
0 missing
value_99numeric258 unique values
0 missing
value_100numeric258 unique values
0 missing
value_101numeric258 unique values
0 missing
value_102numeric258 unique values
0 missing
value_103numeric258 unique values
0 missing
value_104numeric258 unique values
0 missing
value_105numeric258 unique values
0 missing
value_106numeric258 unique values
0 missing
value_107numeric250 unique values
0 missing
value_108numeric248 unique values
0 missing
value_109numeric247 unique values
0 missing
value_110numeric249 unique values
0 missing
value_111numeric252 unique values
0 missing
value_112numeric247 unique values
0 missing
value_113numeric258 unique values
0 missing
value_114numeric258 unique values
0 missing
value_115numeric258 unique values
0 missing
value_116numeric258 unique values
0 missing
value_117numeric258 unique values
0 missing
value_118numeric258 unique values
0 missing
value_119numeric258 unique values
0 missing
value_120numeric258 unique values
0 missing
value_121numeric258 unique values
0 missing
value_122numeric258 unique values
0 missing
value_123numeric243 unique values
0 missing
value_124numeric245 unique values
0 missing
value_125numeric244 unique values
0 missing
value_126numeric244 unique values
0 missing
value_127numeric235 unique values
0 missing
value_128numeric232 unique values
0 missing
value_129numeric229 unique values
0 missing
value_130numeric219 unique values
0 missing
value_131numeric64 unique values
0 missing
value_132numeric116 unique values
0 missing
value_133numeric191 unique values
0 missing
value_134numeric258 unique values
0 missing
value_135numeric258 unique values
0 missing
value_136numeric258 unique values
0 missing
value_137numeric258 unique values
0 missing
value_138numeric258 unique values
0 missing
value_139numeric258 unique values
0 missing
value_140numeric258 unique values
0 missing
value_141numeric258 unique values
0 missing
value_142numeric258 unique values
0 missing
value_143numeric258 unique values
0 missing
value_144numeric258 unique values
0 missing
value_145numeric258 unique values
0 missing
value_146numeric258 unique values
0 missing
value_147numeric258 unique values
0 missing
value_148numeric258 unique values
0 missing
value_149numeric258 unique values
0 missing
value_150numeric258 unique values
0 missing
value_151numeric258 unique values
0 missing
value_152numeric258 unique values
0 missing
value_153numeric257 unique values
0 missing
value_154numeric39 unique values
0 missing
value_155numeric52 unique values
0 missing
value_156numeric258 unique values
0 missing
value_157numeric258 unique values
0 missing
value_158numeric258 unique values
0 missing
value_159numeric179 unique values
0 missing
value_160numeric76 unique values
0 missing
value_161numeric254 unique values
0 missing
value_162numeric258 unique values
0 missing
value_163numeric239 unique values
0 missing
value_164numeric189 unique values
0 missing
value_165numeric236 unique values
0 missing
value_166numeric243 unique values
0 missing
value_167numeric254 unique values
0 missing
value_168numeric258 unique values
0 missing
value_169numeric254 unique values
0 missing
value_170numeric252 unique values
0 missing
value_171numeric258 unique values
0 missing
value_172numeric253 unique values
0 missing
value_173numeric247 unique values
0 missing
value_174numeric258 unique values
0 missing
value_175numeric258 unique values
0 missing
value_176numeric257 unique values
0 missing
value_177numeric257 unique values
0 missing
value_178numeric258 unique values
0 missing
value_179numeric258 unique values
0 missing
value_180numeric258 unique values
0 missing
value_181numeric258 unique values
0 missing
value_182numeric244 unique values
0 missing
value_183numeric258 unique values
0 missing
value_184numeric120 unique values
0 missing
value_185numeric125 unique values
0 missing
value_186numeric258 unique values
0 missing
value_187numeric249 unique values
0 missing
value_188numeric85 unique values
0 missing
value_189numeric254 unique values
0 missing
value_190numeric258 unique values
0 missing
value_191numeric257 unique values
0 missing
value_192numeric258 unique values
0 missing
value_193numeric258 unique values
0 missing
value_194numeric258 unique values
0 missing
value_195numeric258 unique values
0 missing
value_196numeric255 unique values
0 missing
value_197numeric258 unique values
0 missing
value_198numeric258 unique values
0 missing
value_199numeric255 unique values
0 missing
value_200numeric258 unique values
0 missing
time_stepnumeric258 unique values
0 missing

19 properties

258
Number of instances (rows) of the dataset.
204
Number of attributes (columns) of the dataset.
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
202
Number of numeric attributes.
1
Number of nominal attributes.
0
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
Average class difference between consecutive instances.
99.02
Percentage of numeric attributes.
0.79
Number of attributes divided by the number of instances.
0.49
Percentage of nominal attributes.
Percentage of instances belonging to the most frequent class.
Number of instances belonging to the most frequent class.
Percentage of instances belonging to the least frequent class.
Number of instances belonging to the least frequent class.
0
Number of binary attributes.

0 tasks

Define a new task