Data
BitInfoCharts-clean-preprocessed

BitInfoCharts-clean-preprocessed

active ARFF Public Domain Visibility: public Uploaded 25-06-2024 by Bruno Belucci Teixeira
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Bitcoin data scrapped from BitInfoCharts, with preprocessing. Several Bitcoin related data scrapped directly from BitInfoCharts. 'date' in the format %Y-%m-%d. We have only kept the rows between the max(dates with non NaN values of each column) and min(dates with non NaN values of each column), which leave us with dates between 2014-04-09 and 2023-03-14. There are 22 columns: id_series: The id of the time series. date: The date of the time series in the format "%Y-%m-%d". time_step: The time step on the time series. value_X (X from 0 to 18): The values of the time series, which will be used for the forecasting task. Preprocessing: 1 - Renamed columns to 'date' and 'value_X' with X from 0 to 18 (number of columns of original dataset). 2 - Created columns 'time_step' and 'id_series'. There is only one 'id_series' (0). 3 - Ensured that there are no missing dates and that the frequency of the time_series is daily. 4 - Filled nan values by propagating the last valid observation to next valid (ffill). The columns with some missing values were: 'confirmationtime': 'value_10' 'tweets': 'value_14' 'activeaddresses': 'value_16' 'top100cap': 'value_17' 5 - Casted 'date' to str, 'time_step' to int, 'value_X' to float, and defined 'id_series' as 'category'.

22 features

id_seriesnominal1 unique values
0 missing
datestring3262 unique values
0 missing
value_0numeric3237 unique values
0 missing
value_1numeric3246 unique values
0 missing
value_2numeric3252 unique values
0 missing
value_3numeric487 unique values
0 missing
value_4numeric3262 unique values
0 missing
value_5numeric3138 unique values
0 missing
value_6numeric1799 unique values
0 missing
value_7numeric3262 unique values
0 missing
value_8numeric2341 unique values
0 missing
value_9numeric1805 unique values
0 missing
value_10numeric110 unique values
0 missing
value_11numeric3262 unique values
0 missing
value_12numeric3180 unique values
0 missing
value_13numeric3246 unique values
0 missing
value_14numeric3135 unique values
0 missing
value_15numeric2559 unique values
0 missing
value_16numeric3237 unique values
0 missing
value_17numeric2375 unique values
0 missing
value_18numeric2448 unique values
0 missing
time_stepnumeric3262 unique values
0 missing

19 properties

3262
Number of instances (rows) of the dataset.
22
Number of attributes (columns) of the dataset.
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
20
Number of numeric attributes.
1
Number of nominal attributes.
0
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
Average class difference between consecutive instances.
90.91
Percentage of numeric attributes.
0.01
Number of attributes divided by the number of instances.
4.55
Percentage of nominal attributes.
Percentage of instances belonging to the most frequent class.
Number of instances belonging to the most frequent class.
Percentage of instances belonging to the least frequent class.
Number of instances belonging to the least frequent class.
0
Number of binary attributes.

0 tasks

Define a new task