Data
FRED-MD

FRED-MD

active ARFF Creative Commons Attribution 4.0 International Visibility: public Uploaded 24-06-2024 by Bruno Belucci Teixeira
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Monthly Database for Macroeconomic Research From original website: ----- FRED-MD and FRED-QD are large macroeconomic databases designed for the empirical analysis of 'big data'. The datasets of monthly and quarterly observations mimic the coverage of datasets already used in the literature, but they add three appealing features. They are updated in real-time through the FRED database. They are publicly accessible, facilitating the replication of empirical work. And they relieve the researcher of the task of incorporating data changes and revisions (a task accomplished by the data desk at the Federal Reserve Bank of St. Louis). The accompanying papers shows that factors extracted from the FRED-MD and FRED-QD datasets share comparable information content to various vintages of so-called Stock-Watson datasets. These factor estimates are shown to be useful for forecasting a wide range of macroeconomic series. In addition, we find that diffusion indexes constructed as the partial sum of the factor estimates can potentially be useful for the study of business cycle chronology. ----- We used the file 2024-05.csv for monthly data and performed some preprocessing. There are 119 columns: id_series: The id of the time series. date: The date of the time series in the format "%Y-%m-%d". time_step: The time step on the time series. value_X (X from 0 to 115): The values of the time series, which will be used for the forecasting task. Preprocessing: 1 - We transformed each column following the "Tranform" code available in the first line of the file and specified in the original paper which are: 1 - no transformation; 2 - Delta(xt); 3 - Delta^2(xt); 4 - log(xt); 5 - Delta(log(xt)); 6 - Delta^2(log(xt)); 7 - Delta(xt/xt-1 - 1.0) 2 - Dropped first 3 rows to get rid of NaNs due to the transformations and last 4 rows to only consider dates until 2023 (there are some missing values for 2024). 3 - Standardize the 'sasdate' column to the format %Y-%m-%d and renamed it to 'date'. 4 - Dropped columns that only have values starting later than 1959-03-01 (8 of 127 columns). 5 - Created column 'id_series', with value 0, there is only one multivariate series. 6 - Ensured that there are no missing dates and that they are evenly spaced (monthly). 7 - Created column 'time_step' with increasing values of the time_step for the time series. 8 - Filled NaN values with the last valid observation (only 2 cases for columns COMPAPFFx and CP3Mx in 2020-04-01 and 2020-05-01). 9 - Renamed columns to 'value_X' with X from 0 to 115. 10 - Casted 'date' to str, 'time_step' to int, 'value_X' to float, and defined 'id_series' as 'category'.

119 features

datestring778 unique values
0 missing
id_seriesnominal1 unique values
0 missing
value_0numeric778 unique values
0 missing
value_1numeric778 unique values
0 missing
value_2numeric778 unique values
0 missing
value_3numeric778 unique values
0 missing
value_4numeric778 unique values
0 missing
value_5numeric777 unique values
0 missing
value_6numeric772 unique values
0 missing
value_7numeric776 unique values
0 missing
value_8numeric775 unique values
0 missing
value_9numeric777 unique values
0 missing
value_10numeric775 unique values
0 missing
value_11numeric776 unique values
0 missing
value_12numeric777 unique values
0 missing
value_13numeric778 unique values
0 missing
value_14numeric778 unique values
0 missing
value_15numeric777 unique values
0 missing
value_16numeric774 unique values
0 missing
value_17numeric777 unique values
0 missing
value_18numeric765 unique values
0 missing
value_19numeric424 unique values
0 missing
value_20numeric778 unique values
0 missing
value_21numeric778 unique values
0 missing
value_22numeric777 unique values
0 missing
value_23numeric45 unique values
0 missing
value_24numeric116 unique values
0 missing
value_25numeric776 unique values
0 missing
value_26numeric775 unique values
0 missing
value_27numeric774 unique values
0 missing
value_28numeric770 unique values
0 missing
value_29numeric773 unique values
0 missing
value_30numeric775 unique values
0 missing
value_31numeric778 unique values
0 missing
value_32numeric776 unique values
0 missing
value_33numeric772 unique values
0 missing
value_34numeric771 unique values
0 missing
value_35numeric774 unique values
0 missing
value_36numeric768 unique values
0 missing
value_37numeric758 unique values
0 missing
value_38numeric778 unique values
0 missing
value_39numeric774 unique values
0 missing
value_40numeric774 unique values
0 missing
value_41numeric778 unique values
0 missing
value_42numeric762 unique values
0 missing
value_43numeric773 unique values
0 missing
value_44numeric34 unique values
0 missing
value_45numeric29 unique values
0 missing
value_46numeric39 unique values
0 missing
value_47numeric590 unique values
0 missing
value_48numeric248 unique values
0 missing
value_49numeric335 unique values
0 missing
value_50numeric459 unique values
0 missing
value_51numeric376 unique values
0 missing
value_52numeric778 unique values
0 missing
value_53numeric778 unique values
0 missing
value_54numeric777 unique values
0 missing
value_55numeric56 unique values
0 missing
value_56numeric762 unique values
0 missing
value_57numeric777 unique values
0 missing
value_58numeric776 unique values
0 missing
value_59numeric751 unique values
0 missing
value_60numeric682 unique values
0 missing
value_61numeric778 unique values
0 missing
value_62numeric778 unique values
0 missing
value_63numeric778 unique values
0 missing
value_64numeric778 unique values
0 missing
value_65numeric778 unique values
0 missing
value_66numeric777 unique values
0 missing
value_67numeric778 unique values
0 missing
value_68numeric778 unique values
0 missing
value_69numeric308 unique values
0 missing
value_70numeric333 unique values
0 missing
value_71numeric327 unique values
0 missing
value_72numeric318 unique values
0 missing
value_73numeric337 unique values
0 missing
value_74numeric326 unique values
0 missing
value_75numeric288 unique values
0 missing
value_76numeric229 unique values
0 missing
value_77numeric223 unique values
0 missing
value_78numeric192 unique values
0 missing
value_79numeric218 unique values
0 missing
value_80numeric240 unique values
0 missing
value_81numeric246 unique values
0 missing
value_82numeric377 unique values
0 missing
value_83numeric414 unique values
0 missing
value_84numeric465 unique values
0 missing
value_85numeric463 unique values
0 missing
value_86numeric773 unique values
0 missing
value_87numeric756 unique values
0 missing
value_88numeric777 unique values
0 missing
value_89numeric769 unique values
0 missing
value_90numeric612 unique values
0 missing
value_91numeric621 unique values
0 missing
value_92numeric601 unique values
0 missing
value_93numeric699 unique values
0 missing
value_94numeric534 unique values
0 missing
value_95numeric712 unique values
0 missing
value_96numeric731 unique values
0 missing
value_97numeric646 unique values
0 missing
value_98numeric660 unique values
0 missing
value_99numeric722 unique values
0 missing
value_100numeric644 unique values
0 missing
value_101numeric599 unique values
0 missing
value_102numeric714 unique values
0 missing
value_103numeric683 unique values
0 missing
value_104numeric673 unique values
0 missing
value_105numeric686 unique values
0 missing
value_106numeric773 unique values
0 missing
value_107numeric777 unique values
0 missing
value_108numeric774 unique values
0 missing
value_109numeric778 unique values
0 missing
value_110numeric690 unique values
0 missing
value_111numeric700 unique values
0 missing
value_112numeric672 unique values
0 missing
value_113numeric776 unique values
0 missing
value_114numeric778 unique values
0 missing
value_115numeric778 unique values
0 missing
time_stepnumeric778 unique values
0 missing

19 properties

778
Number of instances (rows) of the dataset.
119
Number of attributes (columns) of the dataset.
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
117
Number of numeric attributes.
1
Number of nominal attributes.
0
Percentage of binary attributes.
0
Percentage of instances having missing values.
Average class difference between consecutive instances.
0
Percentage of missing values.
0.15
Number of attributes divided by the number of instances.
98.32
Percentage of numeric attributes.
Percentage of instances belonging to the most frequent class.
0.84
Percentage of nominal attributes.
Number of instances belonging to the most frequent class.
Percentage of instances belonging to the least frequent class.
Number of instances belonging to the least frequent class.
0
Number of binary attributes.

0 tasks

Define a new task