{ "data_id": "45106", "name": "MTPL_SHAP_Tutorial", "exact_name": "MTPL_SHAP_Tutorial", "version": 1, "version_label": null, "description": "This motor third-part liability (MTPL) pricing dataset describes 1 Mio insurance policies and their corresponding claim counts, see\n Mayer, M., Meier, D. and Wuthrich, M.V. (2023) SHAP for Actuaries: Explain any Model. http:\/\/dx.doi.org\/10.2139\/ssrn.4389797", "format": "arff", "uploader": "Michael Mayer", "uploader_id": 26089, "visibility": "public", "creator": "\"Michael Mayer\"", "contributor": null, "date": "2023-04-11 13:40:46", "update_comment": null, "last_update": "2023-04-11 13:40:46", "licence": "GPL-2", "status": "active", "error_message": null, "url": "https:\/\/api.openml.org\/data\/download\/22115754\/dataset", "kaggle_url": null, "default_target_attribute": "claim_nb", "row_id_attribute": null, "ignore_attribute": null, "runs": 0, "suggest": { "input": [ "MTPL_SHAP_Tutorial", "This motor third-part liability (MTPL) pricing dataset describes 1 Mio insurance policies and their corresponding claim counts, see Mayer, M., Meier, D. and Wuthrich, M.V. (2023) SHAP for Actuaries: Explain any Model. http:\/\/dx.doi.org\/10.2139\/ssrn.4389797 " ], "weight": 5 }, "qualities": { "NumberOfInstances": 1000000, "NumberOfFeatures": 7, "NumberOfClasses": 0, "NumberOfMissingValues": 0, "NumberOfInstancesWithMissingValues": 0, "NumberOfNumericFeatures": 7, "NumberOfSymbolicFeatures": 0, "PercentageOfBinaryFeatures": 0, "PercentageOfInstancesWithMissingValues": 0, "PercentageOfMissingValues": 0, "AutoCorrelation": 0.8358968358968359, "PercentageOfNumericFeatures": 100, "Dimensionality": 7.0e-6, "PercentageOfSymbolicFeatures": 0, "MajorityClassPercentage": null, "MajorityClassSize": null, "MinorityClassPercentage": null, "MinorityClassSize": null, "NumberOfBinaryFeatures": 0 }, "tags": [], "features": [ { "name": "claim_nb", "index": "6", "type": "numeric", "distinct": "5", "missing": "0", "target": "1", "min": "0", "max": "4", "mean": "0", "stdev": "0" }, { "name": "year", "index": "0", "type": "numeric", "distinct": "2", "missing": "0", "min": "2018", "max": "2019", "mean": "2019", "stdev": "0" }, { "name": "town", "index": "1", "type": "numeric", "distinct": "3", "missing": "0", "min": "0", "max": "1", "mean": "1", "stdev": "0" }, { "name": "driver_age", "index": "2", "type": "numeric", "distinct": "71", "missing": "0", "min": "18", "max": "88", "mean": "46", "stdev": "14" }, { "name": "car_weight", "index": "3", "type": "numeric", "distinct": "206", "missing": "0", "min": "950", "max": "3120", "mean": "1308", "stdev": "286" }, { "name": "car_power", "index": "4", "type": "numeric", "distinct": "290", "missing": "0", "min": "50", "max": "341", "mean": "125", "stdev": "49" }, { "name": "car_age", "index": "5", "type": "numeric", "distinct": "24", "missing": "0", "min": "0", "max": "23", "mean": "4", "stdev": "4" } ], "nr_of_issues": 0, "nr_of_downvotes": 0, "nr_of_likes": 0, "nr_of_downloads": 0, "total_downloads": 0, "reach": 0, "reuse": 0, "impact_of_reuse": 0, "reach_of_reuse": 0, "impact": 0 }