Data
KDDCup09-Upselling_seed_1_nrows_2000_nclasses_10_ncols_100_stratify_True

KDDCup09-Upselling_seed_1_nrows_2000_nclasses_10_ncols_100_stratify_True

active ARFF Publicly available Visibility: public Uploaded 17-11-2022 by Eddie Bergman
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Subsampling of the dataset KDDCup09-Upselling (43072) with seed=1 args.nrows=2000 args.ncols=100 args.nclasses=10 args.no_stratify=True Generated with the following source code: ```python def subsample( self, seed: int, nrows_max: int = 2_000, ncols_max: int = 100, nclasses_max: int = 10, stratified: bool = True, ) -> Dataset: rng = np.random.default_rng(seed) x = self.x y = self.y # Uniformly sample classes = y.unique() if len(classes) > nclasses_max: vcs = y.value_counts() selected_classes = rng.choice( classes, size=nclasses_max, replace=False, p=vcs / sum(vcs), ) # Select the indices where one of these classes is present idxs = y.index[y.isin(classes)] x = x.iloc[idxs] y = y.iloc[idxs] # Uniformly sample columns if required if len(x.columns) > ncols_max: columns_idxs = rng.choice( list(range(len(x.columns))), size=ncols_max, replace=False ) sorted_column_idxs = sorted(columns_idxs) selected_columns = list(x.columns[sorted_column_idxs]) x = x[selected_columns] else: sorted_column_idxs = list(range(len(x.columns))) if len(x) > nrows_max: # Stratify accordingly target_name = y.name data = pd.concat((x, y), axis="columns") _, subset = train_test_split( data, test_size=nrows_max, stratify=data[target_name], shuffle=True, random_state=seed, ) x = subset.drop(target_name, axis="columns") y = subset[target_name] # We need to convert categorical columns to string for openml categorical_mask = [self.categorical_mask[i] for i in sorted_column_idxs] columns = list(x.columns) return Dataset( # Technically this is not the same but it's where it was derived from dataset=self.dataset, x=x, y=y, categorical_mask=categorical_mask, columns=columns, ) ```

101 features

upselling (target)nominal2 unique values
0 missing
Var298numeric4 unique values
0 missing
Var412numeric2 unique values
0 missing
Var519numeric9 unique values
0 missing
Var592numeric2 unique values
0 missing
Var809numeric1 unique values
1444 missing
Var924numeric1 unique values
0 missing
Var931numeric10 unique values
0 missing
Var1274numeric1 unique values
0 missing
Var1373numeric1 unique values
0 missing
Var1727numeric32 unique values
0 missing
Var1741numeric1 unique values
0 missing
Var1842numeric2 unique values
0 missing
Var1850numeric2 unique values
0 missing
Var1993numeric2 unique values
0 missing
Var2140numeric3 unique values
0 missing
Var2209numeric13 unique values
0 missing
Var2392numeric1 unique values
0 missing
Var3025numeric3 unique values
0 missing
Var3205numeric2 unique values
0 missing
Var3698numeric11 unique values
0 missing
Var3815numeric5 unique values
1958 missing
Var3879numeric1 unique values
0 missing
Var3900numeric1 unique values
0 missing
Var4053numeric72 unique values
0 missing
Var4121numeric2 unique values
0 missing
Var4170numeric2 unique values
0 missing
Var4363numeric19 unique values
0 missing
Var4505numeric2 unique values
0 missing
Var4627numeric2 unique values
0 missing
Var4803numeric1431 unique values
0 missing
Var4898numeric2 unique values
0 missing
Var5142numeric1 unique values
0 missing
Var5406numeric2 unique values
0 missing
Var5488numeric2 unique values
0 missing
Var5697numeric1 unique values
0 missing
Var5991numeric1 unique values
0 missing
Var6074numeric3 unique values
0 missing
Var6270numeric31 unique values
0 missing
Var6282numeric182 unique values
0 missing
Var6323numeric2 unique values
0 missing
Var6367numeric2 unique values
0 missing
Var6723numeric2 unique values
0 missing
Var6738numeric1 unique values
0 missing
Var6785numeric2 unique values
0 missing
Var6815numeric1 unique values
0 missing
Var6845numeric13 unique values
1979 missing
Var7016numeric1 unique values
0 missing
Var7216numeric5 unique values
0 missing
Var7411numeric2 unique values
0 missing
Var7468numeric33 unique values
0 missing
Var7591numeric6 unique values
0 missing
Var7602numeric12 unique values
0 missing
Var7624numeric7 unique values
0 missing
Var7685numeric2 unique values
0 missing
Var7878numeric2 unique values
0 missing
Var7993numeric1 unique values
0 missing
Var8055numeric1 unique values
0 missing
Var8137numeric2 unique values
0 missing
Var8159numeric9 unique values
0 missing
Var8675numeric2 unique values
0 missing
Var8842numeric1 unique values
0 missing
Var9131numeric2 unique values
0 missing
Var9285numeric3 unique values
0 missing
Var9555numeric2 unique values
0 missing
Var9560numeric19 unique values
0 missing
Var10050numeric1 unique values
0 missing
Var10704numeric1 unique values
0 missing
Var10782numeric1 unique values
0 missing
Var10801numeric627 unique values
0 missing
Var11140numeric2 unique values
0 missing
Var11155numeric2 unique values
0 missing
Var11186numeric2 unique values
0 missing
Var11196numeric689 unique values
0 missing
Var11235numeric1452 unique values
0 missing
Var11480numeric1723 unique values
0 missing
Var11511numeric2 unique values
0 missing
Var11568numeric1 unique values
0 missing
Var11711numeric1670 unique values
0 missing
Var11998numeric6 unique values
0 missing
Var12142numeric1 unique values
0 missing
Var12208numeric2 unique values
0 missing
Var12236numeric7 unique values
0 missing
Var12285numeric1 unique values
0 missing
Var12443numeric2 unique values
0 missing
Var12529numeric1 unique values
0 missing
Var12713numeric1 unique values
0 missing
Var12853numeric2 unique values
0 missing
Var12895numeric1 unique values
0 missing
Var12998numeric2 unique values
0 missing
Var13437numeric2 unique values
0 missing
Var13668numeric33 unique values
0 missing
Var13766numeric4 unique values
0 missing
Var14075numeric2 unique values
0 missing
Var14098numeric4 unique values
0 missing
Var14309numeric1 unique values
0 missing
Var14443numeric2 unique values
0 missing
Var14520numeric1 unique values
0 missing
Var14592numeric1 unique values
0 missing
Var14641numeric1 unique values
0 missing
Var14939nominal12 unique values
1740 missing

19 properties

2000
Number of instances (rows) of the dataset.
101
Number of attributes (columns) of the dataset.
2
Number of distinct values of the target attribute (if it is nominal).
7121
Number of missing values in the dataset.
2000
Number of instances with at least one value missing.
99
Number of numeric attributes.
2
Number of nominal attributes.
100
Percentage of instances having missing values.
3.53
Percentage of missing values.
0.87
Average class difference between consecutive instances.
98.02
Percentage of numeric attributes.
0.05
Number of attributes divided by the number of instances.
1.98
Percentage of nominal attributes.
92.65
Percentage of instances belonging to the most frequent class.
1853
Number of instances belonging to the most frequent class.
7.35
Percentage of instances belonging to the least frequent class.
147
Number of instances belonging to the least frequent class.
1
Number of binary attributes.
0.99
Percentage of binary attributes.

0 tasks

Define a new task