Data
okcupid-stem_seed_0_nrows_2000_nclasses_10_ncols_100_stratify_True

okcupid-stem_seed_0_nrows_2000_nclasses_10_ncols_100_stratify_True

active ARFF Publicly available Visibility: public Uploaded 17-11-2022 by Eddie Bergman
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Subsampling of the dataset okcupid-stem (42734) with seed=0 args.nrows=2000 args.ncols=100 args.nclasses=10 args.no_stratify=True Generated with the following source code: ```python def subsample( self, seed: int, nrows_max: int = 2_000, ncols_max: int = 100, nclasses_max: int = 10, stratified: bool = True, ) -> Dataset: rng = np.random.default_rng(seed) x = self.x y = self.y # Uniformly sample classes = y.unique() if len(classes) > nclasses_max: vcs = y.value_counts() selected_classes = rng.choice( classes, size=nclasses_max, replace=False, p=vcs / sum(vcs), ) # Select the indices where one of these classes is present idxs = y.index[y.isin(classes)] x = x.iloc[idxs] y = y.iloc[idxs] # Uniformly sample columns if required if len(x.columns) > ncols_max: columns_idxs = rng.choice( list(range(len(x.columns))), size=ncols_max, replace=False ) sorted_column_idxs = sorted(columns_idxs) selected_columns = list(x.columns[sorted_column_idxs]) x = x[selected_columns] else: sorted_column_idxs = list(range(len(x.columns))) if len(x) > nrows_max: # Stratify accordingly target_name = y.name data = pd.concat((x, y), axis="columns") _, subset = train_test_split( data, test_size=nrows_max, stratify=data[target_name], shuffle=True, random_state=seed, ) x = subset.drop(target_name, axis="columns") y = subset[target_name] # We need to convert categorical columns to string for openml categorical_mask = [self.categorical_mask[i] for i in sorted_column_idxs] columns = list(x.columns) return Dataset( # Technically this is not the same but it's where it was derived from dataset=self.dataset, x=x, y=y, categorical_mask=categorical_mask, columns=columns, ) ```

20 features

job (target)nominal3 unique values
0 missing
agenumeric51 unique values
0 missing
body_typenominal12 unique values
140 missing
dietnominal15 unique values
755 missing
drinksnominal6 unique values
51 missing
drugsnominal3 unique values
463 missing
educationnominal28 unique values
154 missing
ethnicitynominal64 unique values
167 missing
heightnumeric24 unique values
0 missing
incomenominal12 unique values
1559 missing
locationnominal61 unique values
0 missing
offspringnominal15 unique values
1111 missing
orientationnominal3 unique values
0 missing
petsnominal15 unique values
574 missing
religionnominal40 unique values
552 missing
sexnominal2 unique values
0 missing
signnominal47 unique values
317 missing
smokesnominal5 unique values
136 missing
speaksnominal585 unique values
1 missing
statusnominal5 unique values
0 missing

19 properties

2000
Number of instances (rows) of the dataset.
20
Number of attributes (columns) of the dataset.
3
Number of distinct values of the target attribute (if it is nominal).
5980
Number of missing values in the dataset.
1890
Number of instances with at least one value missing.
2
Number of numeric attributes.
18
Number of nominal attributes.
14.95
Percentage of missing values.
0.56
Average class difference between consecutive instances.
10
Percentage of numeric attributes.
0.01
Number of attributes divided by the number of instances.
90
Percentage of nominal attributes.
71.6
Percentage of instances belonging to the most frequent class.
1432
Number of instances belonging to the most frequent class.
9.6
Percentage of instances belonging to the least frequent class.
192
Number of instances belonging to the least frequent class.
1
Number of binary attributes.
5
Percentage of binary attributes.
94.5
Percentage of instances having missing values.

0 tasks

Define a new task