Data
guillermo_seed_1_nrows_2000_nclasses_10_ncols_100_stratify_True

guillermo_seed_1_nrows_2000_nclasses_10_ncols_100_stratify_True

active ARFF Publicly available Visibility: public Uploaded 17-11-2022 by Eddie Bergman
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Subsampling of the dataset guillermo (41159) with seed=1 args.nrows=2000 args.ncols=100 args.nclasses=10 args.no_stratify=True Generated with the following source code: ```python def subsample( self, seed: int, nrows_max: int = 2_000, ncols_max: int = 100, nclasses_max: int = 10, stratified: bool = True, ) -> Dataset: rng = np.random.default_rng(seed) x = self.x y = self.y # Uniformly sample classes = y.unique() if len(classes) > nclasses_max: vcs = y.value_counts() selected_classes = rng.choice( classes, size=nclasses_max, replace=False, p=vcs / sum(vcs), ) # Select the indices where one of these classes is present idxs = y.index[y.isin(classes)] x = x.iloc[idxs] y = y.iloc[idxs] # Uniformly sample columns if required if len(x.columns) > ncols_max: columns_idxs = rng.choice( list(range(len(x.columns))), size=ncols_max, replace=False ) sorted_column_idxs = sorted(columns_idxs) selected_columns = list(x.columns[sorted_column_idxs]) x = x[selected_columns] else: sorted_column_idxs = list(range(len(x.columns))) if len(x) > nrows_max: # Stratify accordingly target_name = y.name data = pd.concat((x, y), axis="columns") _, subset = train_test_split( data, test_size=nrows_max, stratify=data[target_name], shuffle=True, random_state=seed, ) x = subset.drop(target_name, axis="columns") y = subset[target_name] # We need to convert categorical columns to string for openml categorical_mask = [self.categorical_mask[i] for i in sorted_column_idxs] columns = list(x.columns) return Dataset( # Technically this is not the same but it's where it was derived from dataset=self.dataset, x=x, y=y, categorical_mask=categorical_mask, columns=columns, ) ```

101 features

class (target)nominal2 unique values
0 missing
V84numeric782 unique values
0 missing
V117numeric488 unique values
0 missing
V147numeric239 unique values
0 missing
V170numeric180 unique values
0 missing
V233numeric540 unique values
0 missing
V263numeric603 unique values
0 missing
V267numeric613 unique values
0 missing
V362numeric628 unique values
0 missing
V392numeric1 unique values
0 missing
V494numeric678 unique values
0 missing
V497numeric662 unique values
0 missing
V524numeric367 unique values
0 missing
V526numeric454 unique values
0 missing
V567numeric697 unique values
0 missing
V606numeric680 unique values
0 missing
V636numeric267 unique values
0 missing
V684numeric507 unique values
0 missing
V862numeric676 unique values
0 missing
V920numeric306 unique values
0 missing
V1049numeric406 unique values
0 missing
V1083numeric412 unique values
0 missing
V1112numeric329 unique values
0 missing
V1115numeric718 unique values
0 missing
V1150numeric499 unique values
0 missing
V1178numeric357 unique values
0 missing
V1189numeric178 unique values
0 missing
V1246numeric350 unique values
0 missing
V1248numeric548 unique values
0 missing
V1282numeric391 unique values
0 missing
V1312numeric738 unique values
0 missing
V1373numeric474 unique values
0 missing
V1393numeric903 unique values
0 missing
V1477numeric551 unique values
0 missing
V1548numeric772 unique values
0 missing
V1574numeric731 unique values
0 missing
V1622numeric338 unique values
0 missing
V1706numeric359 unique values
0 missing
V1724numeric646 unique values
0 missing
V1782numeric700 unique values
0 missing
V1793numeric674 unique values
0 missing
V1810numeric606 unique values
0 missing
V1825numeric712 unique values
0 missing
V1912numeric574 unique values
0 missing
V1918numeric534 unique values
0 missing
V1943numeric546 unique values
0 missing
V1956numeric586 unique values
0 missing
V1964numeric959 unique values
0 missing
V1986numeric781 unique values
0 missing
V2059numeric619 unique values
0 missing
V2114numeric639 unique values
0 missing
V2128numeric464 unique values
0 missing
V2149numeric834 unique values
0 missing
V2185numeric1 unique values
0 missing
V2192numeric864 unique values
0 missing
V2198numeric808 unique values
0 missing
V2259numeric139 unique values
0 missing
V2271numeric641 unique values
0 missing
V2301numeric271 unique values
0 missing
V2316numeric195 unique values
0 missing
V2342numeric653 unique values
0 missing
V2494numeric737 unique values
0 missing
V2539numeric465 unique values
0 missing
V2616numeric588 unique values
0 missing
V2658numeric478 unique values
0 missing
V2713numeric577 unique values
0 missing
V2744numeric437 unique values
0 missing
V2890numeric470 unique values
0 missing
V3069numeric268 unique values
0 missing
V3079numeric353 unique values
0 missing
V3088numeric732 unique values
0 missing
V3171numeric292 unique values
0 missing
V3179numeric589 unique values
0 missing
V3180numeric839 unique values
0 missing
V3181numeric801 unique values
0 missing
V3233numeric755 unique values
0 missing
V3296numeric189 unique values
0 missing
V3298numeric330 unique values
0 missing
V3312numeric757 unique values
0 missing
V3331numeric815 unique values
0 missing
V3446numeric465 unique values
0 missing
V3451numeric698 unique values
0 missing
V3459numeric857 unique values
0 missing
V3485numeric882 unique values
0 missing
V3522numeric618 unique values
0 missing
V3536numeric799 unique values
0 missing
V3600numeric804 unique values
0 missing
V3650numeric555 unique values
0 missing
V3651numeric537 unique values
0 missing
V3656numeric435 unique values
0 missing
V3727numeric585 unique values
0 missing
V3827numeric411 unique values
0 missing
V3916numeric366 unique values
0 missing
V3932numeric647 unique values
0 missing
V3989numeric347 unique values
0 missing
V3992numeric762 unique values
0 missing
V4084numeric627 unique values
0 missing
V4129numeric1240 unique values
0 missing
V4132numeric1243 unique values
0 missing
V4163numeric1238 unique values
0 missing
V4210numeric1240 unique values
0 missing

19 properties

2000
Number of instances (rows) of the dataset.
101
Number of attributes (columns) of the dataset.
2
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
100
Number of numeric attributes.
1
Number of nominal attributes.
0.99
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
0.52
Average class difference between consecutive instances.
99.01
Percentage of numeric attributes.
0.05
Number of attributes divided by the number of instances.
0.99
Percentage of nominal attributes.
60
Percentage of instances belonging to the most frequent class.
1200
Number of instances belonging to the most frequent class.
40
Percentage of instances belonging to the least frequent class.
800
Number of instances belonging to the least frequent class.
1
Number of binary attributes.

0 tasks

Define a new task