Data
nomao_seed_1_nrows_2000_nclasses_10_ncols_100_stratify_True

nomao_seed_1_nrows_2000_nclasses_10_ncols_100_stratify_True

active ARFF Publicly available Visibility: public Uploaded 17-11-2022 by Eddie Bergman
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Subsampling of the dataset nomao (1486) with seed=1 args.nrows=2000 args.ncols=100 args.nclasses=10 args.no_stratify=True Generated with the following source code: ```python def subsample( self, seed: int, nrows_max: int = 2_000, ncols_max: int = 100, nclasses_max: int = 10, stratified: bool = True, ) -> Dataset: rng = np.random.default_rng(seed) x = self.x y = self.y # Uniformly sample classes = y.unique() if len(classes) > nclasses_max: vcs = y.value_counts() selected_classes = rng.choice( classes, size=nclasses_max, replace=False, p=vcs / sum(vcs), ) # Select the indices where one of these classes is present idxs = y.index[y.isin(classes)] x = x.iloc[idxs] y = y.iloc[idxs] # Uniformly sample columns if required if len(x.columns) > ncols_max: columns_idxs = rng.choice( list(range(len(x.columns))), size=ncols_max, replace=False ) sorted_column_idxs = sorted(columns_idxs) selected_columns = list(x.columns[sorted_column_idxs]) x = x[selected_columns] else: sorted_column_idxs = list(range(len(x.columns))) if len(x) > nrows_max: # Stratify accordingly target_name = y.name data = pd.concat((x, y), axis="columns") _, subset = train_test_split( data, test_size=nrows_max, stratify=data[target_name], shuffle=True, random_state=seed, ) x = subset.drop(target_name, axis="columns") y = subset[target_name] # We need to convert categorical columns to string for openml categorical_mask = [self.categorical_mask[i] for i in sorted_column_idxs] columns = list(x.columns) return Dataset( # Technically this is not the same but it's where it was derived from dataset=self.dataset, x=x, y=y, categorical_mask=categorical_mask, columns=columns, ) ```

101 features

Class (target)nominal2 unique values
0 missing
V1numeric17 unique values
0 missing
V2numeric29 unique values
0 missing
V4numeric340 unique values
0 missing
V6numeric420 unique values
0 missing
V7nominal2 unique values
0 missing
V8nominal2 unique values
0 missing
V9numeric6 unique values
0 missing
V10numeric7 unique values
0 missing
V11numeric52 unique values
0 missing
V12numeric37 unique values
0 missing
V13numeric46 unique values
0 missing
V14numeric37 unique values
0 missing
V15nominal3 unique values
0 missing
V16nominal3 unique values
0 missing
V18numeric4 unique values
0 missing
V20numeric15 unique values
0 missing
V21numeric16 unique values
0 missing
V22numeric18 unique values
0 missing
V23nominal3 unique values
0 missing
V24nominal3 unique values
0 missing
V25numeric14 unique values
0 missing
V26numeric25 unique values
0 missing
V27numeric253 unique values
0 missing
V28numeric169 unique values
0 missing
V29numeric192 unique values
0 missing
V31nominal3 unique values
0 missing
V32nominal3 unique values
0 missing
V33numeric11 unique values
0 missing
V34numeric25 unique values
0 missing
V35numeric52 unique values
0 missing
V36numeric46 unique values
0 missing
V37numeric56 unique values
0 missing
V39nominal3 unique values
0 missing
V40nominal3 unique values
0 missing
V42numeric3 unique values
0 missing
V45numeric14 unique values
0 missing
V46numeric10 unique values
0 missing
V48nominal3 unique values
0 missing
V49numeric6 unique values
0 missing
V50numeric6 unique values
0 missing
V51numeric45 unique values
0 missing
V52numeric24 unique values
0 missing
V53numeric38 unique values
0 missing
V54numeric20 unique values
0 missing
V55nominal3 unique values
0 missing
V57numeric39 unique values
0 missing
V58numeric56 unique values
0 missing
V59numeric876 unique values
0 missing
V60numeric703 unique values
0 missing
V61numeric630 unique values
0 missing
V62numeric735 unique values
0 missing
V64nominal3 unique values
0 missing
V65numeric33 unique values
0 missing
V66numeric52 unique values
0 missing
V67numeric385 unique values
0 missing
V68numeric295 unique values
0 missing
V69numeric390 unique values
0 missing
V70numeric441 unique values
0 missing
V71nominal2 unique values
0 missing
V74numeric4 unique values
0 missing
V75numeric16 unique values
0 missing
V76numeric17 unique values
0 missing
V77numeric16 unique values
0 missing
V78numeric19 unique values
0 missing
V79nominal3 unique values
0 missing
V80nominal3 unique values
0 missing
V83numeric3 unique values
0 missing
V84numeric3 unique values
0 missing
V85numeric3 unique values
0 missing
V86numeric3 unique values
0 missing
V87nominal3 unique values
0 missing
V89numeric107 unique values
0 missing
V90numeric24 unique values
0 missing
V91numeric32 unique values
0 missing
V92nominal3 unique values
0 missing
V93numeric21 unique values
0 missing
V94numeric16 unique values
0 missing
V95numeric17 unique values
0 missing
V96nominal3 unique values
0 missing
V97numeric101 unique values
0 missing
V98numeric14 unique values
0 missing
V99numeric19 unique values
0 missing
V100nominal3 unique values
0 missing
V101numeric725 unique values
0 missing
V102numeric25 unique values
0 missing
V103numeric46 unique values
0 missing
V105numeric701 unique values
0 missing
V106numeric22 unique values
0 missing
V107numeric51 unique values
0 missing
V108nominal2 unique values
0 missing
V109numeric597 unique values
0 missing
V110numeric50 unique values
0 missing
V111numeric70 unique values
0 missing
V112nominal3 unique values
0 missing
V113numeric571 unique values
0 missing
V114numeric38 unique values
0 missing
V115numeric71 unique values
0 missing
V116nominal3 unique values
0 missing
V117numeric332 unique values
0 missing
V118numeric231 unique values
0 missing

19 properties

2000
Number of instances (rows) of the dataset.
101
Number of attributes (columns) of the dataset.
2
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
77
Number of numeric attributes.
24
Number of nominal attributes.
2.97
Percentage of binary attributes.
0
Percentage of instances having missing values.
0.6
Average class difference between consecutive instances.
0
Percentage of missing values.
0.05
Number of attributes divided by the number of instances.
76.24
Percentage of numeric attributes.
71.45
Percentage of instances belonging to the most frequent class.
23.76
Percentage of nominal attributes.
1429
Number of instances belonging to the most frequent class.
28.55
Percentage of instances belonging to the least frequent class.
571
Number of instances belonging to the least frequent class.
3
Number of binary attributes.

0 tasks

Define a new task