{ "data_id": "44695", "name": "Satellite_seed_2_nrows_2000_nclasses_10_ncols_100_stratify_True", "exact_name": "Satellite_seed_2_nrows_2000_nclasses_10_ncols_100_stratify_True", "version": 1, "version_label": "254eaf27-088f-4e03-a4b9-0464e21a29e0", "description": "Subsampling of the dataset Satellite (40900) with\n\nseed=2\nargs.nrows=2000\nargs.ncols=100\nargs.nclasses=10\nargs.no_stratify=True\nGenerated with the following source code:\n\n\n```python\n def subsample(\n self,\n seed: int,\n nrows_max: int = 2_000,\n ncols_max: int = 100,\n nclasses_max: int = 10,\n stratified: bool = True,\n ) -> Dataset:\n rng = np.random.default_rng(seed)\n\n x = self.x\n y = self.y\n\n # Uniformly sample\n classes = y.unique()\n if len(classes) > nclasses_max:\n vcs = y.value_counts()\n selected_classes = rng.choice(\n classes,\n size=nclasses_max,\n replace=False,\n p=vcs \/ sum(vcs),\n )\n\n # Select the indices where one of these classes is present\n idxs = y.index[y.isin(classes)]\n x = x.iloc[idxs]\n y = y.iloc[idxs]\n\n # Uniformly sample columns if required\n if len(x.columns) > ncols_max:\n columns_idxs = rng.choice(\n list(range(len(x.columns))), size=ncols_max, replace=False\n )\n sorted_column_idxs = sorted(columns_idxs)\n selected_columns = list(x.columns[sorted_column_idxs])\n x = x[selected_columns]\n else:\n sorted_column_idxs = list(range(len(x.columns)))\n\n if len(x) > nrows_max:\n # Stratify accordingly\n target_name = y.name\n data = pd.concat((x, y), axis=\"columns\")\n _, subset = train_test_split(\n data,\n test_size=nrows_max,\n stratify=data[target_name],\n shuffle=True,\n random_state=seed,\n )\n x = subset.drop(target_name, axis=\"columns\")\n y = subset[target_name]\n\n # We need to convert categorical columns to string for openml\n categorical_mask = [self.categorical_mask[i] for i in sorted_column_idxs]\n columns = list(x.columns)\n\n return Dataset(\n # Technically this is not the same but it's where it was derived from\n dataset=self.dataset,\n x=x,\n y=y,\n categorical_mask=categorical_mask,\n columns=columns,\n )\n```", "format": "arff", "uploader": "Eddie Bergman", "uploader_id": 32840, "visibility": "public", "creator": "\"Eddie Bergman\"", "contributor": null, "date": "2022-11-17 18:43:37", "update_comment": null, "last_update": "2022-11-17 18:43:37", "licence": "Public", "status": "active", "error_message": null, "url": "https:\/\/api.openml.org\/data\/download\/22111457\/dataset", "kaggle_url": null, "default_target_attribute": "Target", "row_id_attribute": null, "ignore_attribute": null, "runs": 0, "suggest": { "input": [ "Satellite_seed_2_nrows_2000_nclasses_10_ncols_100_stratify_True", "Subsampling of the dataset Satellite (40900) with seed=2 args.nrows=2000 args.ncols=100 args.nclasses=10 args.no_stratify=True Generated with the following source code: ```python def subsample( self, seed: int, nrows_max: int = 2_000, ncols_max: int = 100, nclasses_max: int = 10, stratified: bool = True, ) -> Dataset: rng = np.random.default_rng(seed) x = self.x y = self.y # Uniformly sample classes = y.unique() if len(classes) > nclasses_max: vcs = y.value_counts() selected_classes = rng.choice " ], "weight": 5 }, "qualities": { "NumberOfInstances": 2000, "NumberOfFeatures": 37, "NumberOfClasses": 2, "NumberOfMissingValues": 0, "NumberOfInstancesWithMissingValues": 0, "NumberOfNumericFeatures": 36, "NumberOfSymbolicFeatures": 1, "PercentageOfBinaryFeatures": 2.7027027027027026, "PercentageOfInstancesWithMissingValues": 0, "PercentageOfMissingValues": 0, "AutoCorrelation": 0.9709854927463731, "PercentageOfNumericFeatures": 97.2972972972973, "Dimensionality": 0.0185, "PercentageOfSymbolicFeatures": 2.7027027027027026, "MajorityClassPercentage": 98.55000000000001, "MajorityClassSize": 1971, "MinorityClassPercentage": 1.4500000000000002, "MinorityClassSize": 29, "NumberOfBinaryFeatures": 1 }, "tags": [], "features": [ { "name": "Target", "index": "36", "type": "nominal", "distinct": "2", "missing": "0", "target": "1", "distr": [ [ "Normal", "Anomaly" ], [ [ "1971", "0" ], [ "0", "29" ] ] ] }, { "name": "V1", "index": "0", "type": "numeric", "distinct": "45", "missing": "0", "min": "43", "max": "102", "mean": "73", "stdev": "12" }, { "name": "V2", "index": "1", "type": "numeric", "distinct": "64", "missing": "0", "min": "29", "max": "137", "mean": "91", "stdev": "16" }, { "name": "V3", "index": "2", "type": "numeric", "distinct": "65", "missing": "0", "min": "62", "max": "139", "mean": "99", "stdev": "16" }, { "name": "V4", "index": "3", "type": "numeric", "distinct": "66", "missing": "0", "min": "44", "max": "144", "mean": "80", "stdev": "13" }, { "name": "V5", "index": "4", "type": "numeric", "distinct": "46", "missing": "0", "min": "42", "max": "102", "mean": "73", "stdev": "12" }, { "name": "V6", "index": "5", "type": "numeric", "distinct": "62", "missing": "0", "min": "29", "max": "126", "mean": "91", "stdev": "16" }, { "name": "V7", "index": "6", "type": "numeric", "distinct": "64", "missing": "0", "min": "62", "max": "138", "mean": "99", "stdev": "15" }, { "name": "V8", "index": "7", "type": "numeric", "distinct": "62", "missing": "0", "min": "49", "max": "144", "mean": "79", "stdev": "13" }, { "name": "V9", "index": "8", "type": "numeric", "distinct": "45", "missing": "0", "min": "42", "max": "101", "mean": "73", "stdev": "12" }, { "name": "V10", "index": "9", "type": "numeric", "distinct": "69", "missing": "0", "min": "29", "max": "125", "mean": "91", "stdev": "16" }, { "name": "V11", "index": "10", "type": "numeric", "distinct": "66", "missing": "0", "min": "60", "max": "138", "mean": "99", "stdev": "15" }, { "name": "V12", "index": "11", "type": "numeric", "distinct": "71", "missing": "0", "min": "39", "max": "144", "mean": "79", "stdev": "13" }, { "name": "V13", "index": "12", "type": "numeric", "distinct": "48", "missing": "0", "min": "41", "max": "104", "mean": "73", "stdev": "12" }, { "name": "V14", "index": "13", "type": "numeric", "distinct": "64", "missing": "0", "min": "29", "max": "130", "mean": "91", "stdev": "16" }, { "name": "V15", "index": "14", "type": "numeric", "distinct": "63", "missing": "0", "min": "65", "max": "139", "mean": "99", "stdev": "16" }, { "name": "V16", "index": "15", "type": "numeric", "distinct": "64", "missing": "0", "min": "48", "max": "143", "mean": "79", "stdev": "13" }, { "name": "V17", "index": "16", "type": "numeric", "distinct": "47", "missing": "0", "min": "41", "max": "104", "mean": "73", "stdev": "12" }, { "name": "V18", "index": "17", "type": "numeric", "distinct": "59", "missing": "0", "min": "29", "max": "128", "mean": "91", "stdev": "15" }, { "name": "V19", "index": "18", "type": "numeric", "distinct": "63", "missing": "0", "min": "62", "max": "133", "mean": "99", "stdev": "15" }, { "name": "V20", "index": "19", "type": "numeric", "distinct": "63", "missing": "0", "min": "48", "max": "143", "mean": "79", "stdev": "14" }, { "name": "V21", "index": "20", "type": "numeric", "distinct": "47", "missing": "0", "min": "42", "max": "104", "mean": "73", "stdev": "12" }, { "name": "V22", "index": "21", "type": "numeric", "distinct": "62", "missing": "0", "min": "29", "max": "125", "mean": "91", "stdev": "16" }, { "name": "V23", "index": "22", "type": "numeric", "distinct": "63", "missing": "0", "min": "62", "max": "135", "mean": "99", "stdev": "16" }, { "name": "V24", "index": "23", "type": "numeric", "distinct": "63", "missing": "0", "min": "41", "max": "146", "mean": "79", "stdev": "14" }, { "name": "V25", "index": "24", "type": "numeric", "distinct": "46", "missing": "0", "min": "41", "max": "101", "mean": "73", "stdev": "12" }, { "name": "V26", "index": "25", "type": "numeric", "distinct": "69", "missing": "0", "min": "27", "max": "130", "mean": "91", "stdev": "16" }, { "name": "V27", "index": "26", "type": "numeric", "distinct": "65", "missing": "0", "min": "60", "max": "136", "mean": "99", "stdev": "16" }, { "name": "V28", "index": "27", "type": "numeric", "distinct": "67", "missing": "0", "min": "46", "max": "146", "mean": "79", "stdev": "14" }, { "name": "V29", "index": "28", "type": "numeric", "distinct": "47", "missing": "0", "min": "41", "max": "101", "mean": "73", "stdev": "12" }, { "name": "V30", "index": "29", "type": "numeric", "distinct": "69", "missing": "0", "min": "27", "max": "128", "mean": "91", "stdev": "16" }, { "name": "V31", "index": "30", "type": "numeric", "distinct": "63", "missing": "0", "min": "65", "max": "139", "mean": "99", "stdev": "16" }, { "name": "V32", "index": "31", "type": "numeric", "distinct": "65", "missing": "0", "min": "48", "max": "146", "mean": "79", "stdev": "14" }, { "name": "V33", "index": "32", "type": "numeric", "distinct": "48", "missing": "0", "min": "40", "max": "104", "mean": "73", "stdev": "12" }, { "name": "V34", "index": "33", "type": "numeric", "distinct": "67", "missing": "0", "min": "27", "max": "127", "mean": "91", "stdev": "16" }, { "name": "V35", "index": "34", "type": "numeric", "distinct": "63", "missing": "0", "min": "63", "max": "136", "mean": "99", "stdev": "16" }, { "name": "V36", "index": "35", "type": "numeric", "distinct": "68", "missing": "0", "min": "34", "max": "143", "mean": "79", "stdev": "14" } ], "nr_of_issues": 0, "nr_of_downvotes": 0, "nr_of_likes": 0, "nr_of_downloads": 0, "total_downloads": 0, "reach": 0, "reuse": 0, "impact_of_reuse": 0, "reach_of_reuse": 0, "impact": 0 }