Data
wine-quality-white_seed_4_nrows_2000_nclasses_10_ncols_100_stratify_True

wine-quality-white_seed_4_nrows_2000_nclasses_10_ncols_100_stratify_True

active ARFF Publicly available Visibility: public Uploaded 17-11-2022 by Eddie Bergman
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Subsampling of the dataset wine-quality-white (40498) with seed=4 args.nrows=2000 args.ncols=100 args.nclasses=10 args.no_stratify=True Generated with the following source code: ```python def subsample( self, seed: int, nrows_max: int = 2_000, ncols_max: int = 100, nclasses_max: int = 10, stratified: bool = True, ) -> Dataset: rng = np.random.default_rng(seed) x = self.x y = self.y # Uniformly sample classes = y.unique() if len(classes) > nclasses_max: vcs = y.value_counts() selected_classes = rng.choice( classes, size=nclasses_max, replace=False, p=vcs / sum(vcs), ) # Select the indices where one of these classes is present idxs = y.index[y.isin(classes)] x = x.iloc[idxs] y = y.iloc[idxs] # Uniformly sample columns if required if len(x.columns) > ncols_max: columns_idxs = rng.choice( list(range(len(x.columns))), size=ncols_max, replace=False ) sorted_column_idxs = sorted(columns_idxs) selected_columns = list(x.columns[sorted_column_idxs]) x = x[selected_columns] else: sorted_column_idxs = list(range(len(x.columns))) if len(x) > nrows_max: # Stratify accordingly target_name = y.name data = pd.concat((x, y), axis="columns") _, subset = train_test_split( data, test_size=nrows_max, stratify=data[target_name], shuffle=True, random_state=seed, ) x = subset.drop(target_name, axis="columns") y = subset[target_name] # We need to convert categorical columns to string for openml categorical_mask = [self.categorical_mask[i] for i in sorted_column_idxs] columns = list(x.columns) return Dataset( # Technically this is not the same but it's where it was derived from dataset=self.dataset, x=x, y=y, categorical_mask=categorical_mask, columns=columns, ) ```

12 features

Class (target)nominal7 unique values
0 missing
V1numeric58 unique values
0 missing
V2numeric99 unique values
0 missing
V3numeric80 unique values
0 missing
V4numeric256 unique values
0 missing
V5numeric114 unique values
0 missing
V6numeric106 unique values
0 missing
V7numeric221 unique values
0 missing
V8numeric662 unique values
0 missing
V9numeric89 unique values
0 missing
V10numeric74 unique values
0 missing
V11numeric83 unique values
0 missing

19 properties

2000
Number of instances (rows) of the dataset.
12
Number of attributes (columns) of the dataset.
7
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
11
Number of numeric attributes.
1
Number of nominal attributes.
0
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
0.34
Average class difference between consecutive instances.
91.67
Percentage of numeric attributes.
0.01
Number of attributes divided by the number of instances.
8.33
Percentage of nominal attributes.
44.9
Percentage of instances belonging to the most frequent class.
898
Number of instances belonging to the most frequent class.
0.1
Percentage of instances belonging to the least frequent class.
2
Number of instances belonging to the least frequent class.
0
Number of binary attributes.

0 tasks

Define a new task