Data
sylvine_seed_0_nrows_2000_nclasses_10_ncols_100_stratify_True

sylvine_seed_0_nrows_2000_nclasses_10_ncols_100_stratify_True

active ARFF Publicly available Visibility: public Uploaded 17-11-2022 by Eddie Bergman
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Subsampling of the dataset sylvine (41146) with seed=0 args.nrows=2000 args.ncols=100 args.nclasses=10 args.no_stratify=True Generated with the following source code: ```python def subsample( self, seed: int, nrows_max: int = 2_000, ncols_max: int = 100, nclasses_max: int = 10, stratified: bool = True, ) -> Dataset: rng = np.random.default_rng(seed) x = self.x y = self.y # Uniformly sample classes = y.unique() if len(classes) > nclasses_max: vcs = y.value_counts() selected_classes = rng.choice( classes, size=nclasses_max, replace=False, p=vcs / sum(vcs), ) # Select the indices where one of these classes is present idxs = y.index[y.isin(classes)] x = x.iloc[idxs] y = y.iloc[idxs] # Uniformly sample columns if required if len(x.columns) > ncols_max: columns_idxs = rng.choice( list(range(len(x.columns))), size=ncols_max, replace=False ) sorted_column_idxs = sorted(columns_idxs) selected_columns = list(x.columns[sorted_column_idxs]) x = x[selected_columns] else: sorted_column_idxs = list(range(len(x.columns))) if len(x) > nrows_max: # Stratify accordingly target_name = y.name data = pd.concat((x, y), axis="columns") _, subset = train_test_split( data, test_size=nrows_max, stratify=data[target_name], shuffle=True, random_state=seed, ) x = subset.drop(target_name, axis="columns") y = subset[target_name] # We need to convert categorical columns to string for openml categorical_mask = [self.categorical_mask[i] for i in sorted_column_idxs] columns = list(x.columns) return Dataset( # Technically this is not the same but it's where it was derived from dataset=self.dataset, x=x, y=y, categorical_mask=categorical_mask, columns=columns, ) ```

21 features

class (target)nominal2 unique values
0 missing
V1numeric142 unique values
0 missing
V2numeric293 unique values
0 missing
V3numeric103 unique values
0 missing
V4numeric1438 unique values
0 missing
V5numeric349 unique values
0 missing
V6numeric1416 unique values
0 missing
V7numeric829 unique values
0 missing
V8numeric44 unique values
0 missing
V9numeric1451 unique values
0 missing
V10numeric307 unique values
0 missing
V11numeric107 unique values
0 missing
V12numeric135 unique values
0 missing
V13numeric131 unique values
0 missing
V14numeric1419 unique values
0 missing
V15numeric1315 unique values
0 missing
V16numeric306 unique values
0 missing
V17numeric103 unique values
0 missing
V18numeric356 unique values
0 missing
V19numeric355 unique values
0 missing
V20numeric197 unique values
0 missing

19 properties

2000
Number of instances (rows) of the dataset.
21
Number of attributes (columns) of the dataset.
2
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
20
Number of numeric attributes.
1
Number of nominal attributes.
4.76
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
0.5
Average class difference between consecutive instances.
95.24
Percentage of numeric attributes.
0.01
Number of attributes divided by the number of instances.
4.76
Percentage of nominal attributes.
50
Percentage of instances belonging to the most frequent class.
1000
Number of instances belonging to the most frequent class.
50
Percentage of instances belonging to the least frequent class.
1000
Number of instances belonging to the least frequent class.
1
Number of binary attributes.

0 tasks

Define a new task