Data
first-order-theorem-proving_seed_4_nrows_2000_nclasses_10_ncols_100_stratify_True

first-order-theorem-proving_seed_4_nrows_2000_nclasses_10_ncols_100_stratify_True

active ARFF Publicly available Visibility: public Uploaded 17-11-2022 by Eddie Bergman
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Subsampling of the dataset first-order-theorem-proving (1475) with seed=4 args.nrows=2000 args.ncols=100 args.nclasses=10 args.no_stratify=True Generated with the following source code: ```python def subsample( self, seed: int, nrows_max: int = 2_000, ncols_max: int = 100, nclasses_max: int = 10, stratified: bool = True, ) -> Dataset: rng = np.random.default_rng(seed) x = self.x y = self.y # Uniformly sample classes = y.unique() if len(classes) > nclasses_max: vcs = y.value_counts() selected_classes = rng.choice( classes, size=nclasses_max, replace=False, p=vcs / sum(vcs), ) # Select the indices where one of these classes is present idxs = y.index[y.isin(classes)] x = x.iloc[idxs] y = y.iloc[idxs] # Uniformly sample columns if required if len(x.columns) > ncols_max: columns_idxs = rng.choice( list(range(len(x.columns))), size=ncols_max, replace=False ) sorted_column_idxs = sorted(columns_idxs) selected_columns = list(x.columns[sorted_column_idxs]) x = x[selected_columns] else: sorted_column_idxs = list(range(len(x.columns))) if len(x) > nrows_max: # Stratify accordingly target_name = y.name data = pd.concat((x, y), axis="columns") _, subset = train_test_split( data, test_size=nrows_max, stratify=data[target_name], shuffle=True, random_state=seed, ) x = subset.drop(target_name, axis="columns") y = subset[target_name] # We need to convert categorical columns to string for openml categorical_mask = [self.categorical_mask[i] for i in sorted_column_idxs] columns = list(x.columns) return Dataset( # Technically this is not the same but it's where it was derived from dataset=self.dataset, x=x, y=y, categorical_mask=categorical_mask, columns=columns, ) ```

52 features

Class (target)nominal6 unique values
0 missing
V1numeric671 unique values
0 missing
V2numeric612 unique values
0 missing
V3numeric614 unique values
0 missing
V4numeric685 unique values
0 missing
V5numeric742 unique values
0 missing
V6numeric543 unique values
0 missing
V7numeric664 unique values
0 missing
V8numeric40 unique values
0 missing
V9numeric877 unique values
0 missing
V10numeric22 unique values
0 missing
V11numeric1136 unique values
0 missing
V12numeric154 unique values
0 missing
V13numeric1346 unique values
0 missing
V14numeric77 unique values
0 missing
V15numeric1781 unique values
0 missing
V16numeric1381 unique values
0 missing
V17numeric1005 unique values
0 missing
V18numeric87 unique values
0 missing
V19numeric1357 unique values
0 missing
V20numeric74 unique values
0 missing
V21numeric1494 unique values
0 missing
V22numeric72 unique values
0 missing
V23numeric1599 unique values
0 missing
V24numeric96 unique values
0 missing
V25numeric1684 unique values
0 missing
V26numeric421 unique values
0 missing
V27numeric1700 unique values
0 missing
V28numeric541 unique values
0 missing
V29numeric1794 unique values
0 missing
V30numeric61 unique values
0 missing
V31numeric74 unique values
0 missing
V32numeric77 unique values
0 missing
V33numeric20 unique values
0 missing
V34numeric23 unique values
0 missing
V35numeric42 unique values
0 missing
V36numeric54 unique values
0 missing
V37numeric674 unique values
0 missing
V38numeric949 unique values
0 missing
V39numeric594 unique values
0 missing
V40numeric47 unique values
0 missing
V41numeric671 unique values
0 missing
V42numeric23 unique values
0 missing
V43numeric25 unique values
0 missing
V44numeric781 unique values
0 missing
V45numeric986 unique values
0 missing
V46numeric902 unique values
0 missing
V47numeric775 unique values
0 missing
V48numeric793 unique values
0 missing
V49numeric1061 unique values
0 missing
V50numeric737 unique values
0 missing
V51numeric1085 unique values
0 missing

19 properties

2000
Number of instances (rows) of the dataset.
52
Number of attributes (columns) of the dataset.
6
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
51
Number of numeric attributes.
1
Number of nominal attributes.
0.03
Number of attributes divided by the number of instances.
98.08
Percentage of numeric attributes.
41.75
Percentage of instances belonging to the most frequent class.
1.92
Percentage of nominal attributes.
835
Number of instances belonging to the most frequent class.
7.95
Percentage of instances belonging to the least frequent class.
159
Number of instances belonging to the least frequent class.
0
Number of binary attributes.
0
Percentage of binary attributes.
0
Percentage of instances having missing values.
0.23
Average class difference between consecutive instances.
0
Percentage of missing values.

0 tasks

Define a new task