Data
first-order-theorem-proving_seed_1_nrows_2000_nclasses_10_ncols_100_stratify_True

first-order-theorem-proving_seed_1_nrows_2000_nclasses_10_ncols_100_stratify_True

active ARFF Publicly available Visibility: public Uploaded 17-11-2022 by Eddie Bergman
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Subsampling of the dataset first-order-theorem-proving (1475) with seed=1 args.nrows=2000 args.ncols=100 args.nclasses=10 args.no_stratify=True Generated with the following source code: ```python def subsample( self, seed: int, nrows_max: int = 2_000, ncols_max: int = 100, nclasses_max: int = 10, stratified: bool = True, ) -> Dataset: rng = np.random.default_rng(seed) x = self.x y = self.y # Uniformly sample classes = y.unique() if len(classes) > nclasses_max: vcs = y.value_counts() selected_classes = rng.choice( classes, size=nclasses_max, replace=False, p=vcs / sum(vcs), ) # Select the indices where one of these classes is present idxs = y.index[y.isin(classes)] x = x.iloc[idxs] y = y.iloc[idxs] # Uniformly sample columns if required if len(x.columns) > ncols_max: columns_idxs = rng.choice( list(range(len(x.columns))), size=ncols_max, replace=False ) sorted_column_idxs = sorted(columns_idxs) selected_columns = list(x.columns[sorted_column_idxs]) x = x[selected_columns] else: sorted_column_idxs = list(range(len(x.columns))) if len(x) > nrows_max: # Stratify accordingly target_name = y.name data = pd.concat((x, y), axis="columns") _, subset = train_test_split( data, test_size=nrows_max, stratify=data[target_name], shuffle=True, random_state=seed, ) x = subset.drop(target_name, axis="columns") y = subset[target_name] # We need to convert categorical columns to string for openml categorical_mask = [self.categorical_mask[i] for i in sorted_column_idxs] columns = list(x.columns) return Dataset( # Technically this is not the same but it's where it was derived from dataset=self.dataset, x=x, y=y, categorical_mask=categorical_mask, columns=columns, ) ```

52 features

Class (target)nominal6 unique values
0 missing
V1numeric678 unique values
0 missing
V2numeric624 unique values
0 missing
V3numeric613 unique values
0 missing
V4numeric672 unique values
0 missing
V5numeric756 unique values
0 missing
V6numeric556 unique values
0 missing
V7numeric680 unique values
0 missing
V8numeric36 unique values
0 missing
V9numeric897 unique values
0 missing
V10numeric24 unique values
0 missing
V11numeric1134 unique values
0 missing
V12numeric152 unique values
0 missing
V13numeric1366 unique values
0 missing
V14numeric78 unique values
0 missing
V15numeric1776 unique values
0 missing
V16numeric1357 unique values
0 missing
V17numeric971 unique values
0 missing
V18numeric93 unique values
0 missing
V19numeric1343 unique values
0 missing
V20numeric80 unique values
0 missing
V21numeric1472 unique values
0 missing
V22numeric81 unique values
0 missing
V23numeric1580 unique values
0 missing
V24numeric88 unique values
0 missing
V25numeric1634 unique values
0 missing
V26numeric431 unique values
0 missing
V27numeric1694 unique values
0 missing
V28numeric513 unique values
0 missing
V29numeric1757 unique values
0 missing
V30numeric59 unique values
0 missing
V31numeric73 unique values
0 missing
V32numeric78 unique values
0 missing
V33numeric20 unique values
0 missing
V34numeric21 unique values
0 missing
V35numeric39 unique values
0 missing
V36numeric52 unique values
0 missing
V37numeric641 unique values
0 missing
V38numeric921 unique values
0 missing
V39numeric579 unique values
0 missing
V40numeric52 unique values
0 missing
V41numeric652 unique values
0 missing
V42numeric27 unique values
0 missing
V43numeric25 unique values
0 missing
V44numeric761 unique values
0 missing
V45numeric969 unique values
0 missing
V46numeric869 unique values
0 missing
V47numeric758 unique values
0 missing
V48numeric746 unique values
0 missing
V49numeric1044 unique values
0 missing
V50numeric701 unique values
0 missing
V51numeric1089 unique values
0 missing

19 properties

2000
Number of instances (rows) of the dataset.
52
Number of attributes (columns) of the dataset.
6
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
51
Number of numeric attributes.
1
Number of nominal attributes.
0
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
0.24
Average class difference between consecutive instances.
98.08
Percentage of numeric attributes.
0.03
Number of attributes divided by the number of instances.
1.92
Percentage of nominal attributes.
41.75
Percentage of instances belonging to the most frequent class.
835
Number of instances belonging to the most frequent class.
7.95
Percentage of instances belonging to the least frequent class.
159
Number of instances belonging to the least frequent class.
0
Number of binary attributes.

0 tasks

Define a new task