Data
Bioresponse_seed_2_nrows_2000_nclasses_10_ncols_100_stratify_True

Bioresponse_seed_2_nrows_2000_nclasses_10_ncols_100_stratify_True

active ARFF Publicly available Visibility: public Uploaded 17-11-2022 by Eddie Bergman
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Subsampling of the dataset Bioresponse (4134) with seed=2 args.nrows=2000 args.ncols=100 args.nclasses=10 args.no_stratify=True Generated with the following source code: ```python def subsample( self, seed: int, nrows_max: int = 2_000, ncols_max: int = 100, nclasses_max: int = 10, stratified: bool = True, ) -> Dataset: rng = np.random.default_rng(seed) x = self.x y = self.y # Uniformly sample classes = y.unique() if len(classes) > nclasses_max: vcs = y.value_counts() selected_classes = rng.choice( classes, size=nclasses_max, replace=False, p=vcs / sum(vcs), ) # Select the indices where one of these classes is present idxs = y.index[y.isin(classes)] x = x.iloc[idxs] y = y.iloc[idxs] # Uniformly sample columns if required if len(x.columns) > ncols_max: columns_idxs = rng.choice( list(range(len(x.columns))), size=ncols_max, replace=False ) sorted_column_idxs = sorted(columns_idxs) selected_columns = list(x.columns[sorted_column_idxs]) x = x[selected_columns] else: sorted_column_idxs = list(range(len(x.columns))) if len(x) > nrows_max: # Stratify accordingly target_name = y.name data = pd.concat((x, y), axis="columns") _, subset = train_test_split( data, test_size=nrows_max, stratify=data[target_name], shuffle=True, random_state=seed, ) x = subset.drop(target_name, axis="columns") y = subset[target_name] # We need to convert categorical columns to string for openml categorical_mask = [self.categorical_mask[i] for i in sorted_column_idxs] columns = list(x.columns) return Dataset( # Technically this is not the same but it's where it was derived from dataset=self.dataset, x=x, y=y, categorical_mask=categorical_mask, columns=columns, ) ```

101 features

target (target)nominal2 unique values
0 missing
D69numeric688 unique values
0 missing
D94numeric2 unique values
0 missing
D101numeric330 unique values
0 missing
D135numeric12 unique values
0 missing
D155numeric12 unique values
0 missing
D171numeric14 unique values
0 missing
D179numeric6 unique values
0 missing
D182numeric535 unique values
0 missing
D184numeric11 unique values
0 missing
D186numeric101 unique values
0 missing
D256numeric4 unique values
0 missing
D318numeric5 unique values
0 missing
D322numeric4 unique values
0 missing
D342numeric6 unique values
0 missing
D351numeric8 unique values
0 missing
D374numeric11 unique values
0 missing
D376numeric7 unique values
0 missing
D384numeric5 unique values
0 missing
D387numeric4 unique values
0 missing
D439numeric5 unique values
0 missing
D443numeric16 unique values
0 missing
D459numeric9 unique values
0 missing
D466numeric8 unique values
0 missing
D502numeric4 unique values
0 missing
D519numeric11 unique values
0 missing
D550numeric10 unique values
0 missing
D565numeric7 unique values
0 missing
D572numeric4 unique values
0 missing
D595numeric9 unique values
0 missing
D600numeric3 unique values
0 missing
D652numeric5 unique values
0 missing
D672numeric12 unique values
0 missing
D696numeric3 unique values
0 missing
D711numeric6 unique values
0 missing
D722numeric3 unique values
0 missing
D737numeric3 unique values
0 missing
D760numeric5 unique values
0 missing
D770numeric11 unique values
0 missing
D775numeric6 unique values
0 missing
D781numeric4 unique values
0 missing
D784numeric3 unique values
0 missing
D793numeric8 unique values
0 missing
D815numeric9 unique values
0 missing
D827numeric3 unique values
0 missing
D828numeric3 unique values
0 missing
D855numeric7 unique values
0 missing
D871numeric4 unique values
0 missing
D879numeric4 unique values
0 missing
D880numeric6 unique values
0 missing
D890numeric17 unique values
0 missing
D905numeric6 unique values
0 missing
D910numeric3 unique values
0 missing
D926numeric21 unique values
0 missing
D946numeric10 unique values
0 missing
D955numeric2 unique values
0 missing
D986numeric2 unique values
0 missing
D997numeric2 unique values
0 missing
D1012numeric2 unique values
0 missing
D1037numeric2 unique values
0 missing
D1039numeric2 unique values
0 missing
D1040numeric2 unique values
0 missing
D1081numeric2 unique values
0 missing
D1082numeric2 unique values
0 missing
D1116numeric2 unique values
0 missing
D1119numeric2 unique values
0 missing
D1126numeric2 unique values
0 missing
D1141numeric2 unique values
0 missing
D1156numeric2 unique values
0 missing
D1170numeric2 unique values
0 missing
D1185numeric2 unique values
0 missing
D1192numeric2 unique values
0 missing
D1202numeric2 unique values
0 missing
D1214numeric2 unique values
0 missing
D1223numeric2 unique values
0 missing
D1230numeric2 unique values
0 missing
D1275numeric2 unique values
0 missing
D1338numeric2 unique values
0 missing
D1361numeric2 unique values
0 missing
D1370numeric2 unique values
0 missing
D1372numeric2 unique values
0 missing
D1375numeric2 unique values
0 missing
D1405numeric2 unique values
0 missing
D1462numeric2 unique values
0 missing
D1482numeric2 unique values
0 missing
D1485numeric2 unique values
0 missing
D1489numeric2 unique values
0 missing
D1512numeric2 unique values
0 missing
D1513numeric2 unique values
0 missing
D1535numeric2 unique values
0 missing
D1539numeric2 unique values
0 missing
D1568numeric2 unique values
0 missing
D1569numeric2 unique values
0 missing
D1598numeric2 unique values
0 missing
D1612numeric2 unique values
0 missing
D1655numeric2 unique values
0 missing
D1664numeric2 unique values
0 missing
D1677numeric2 unique values
0 missing
D1685numeric2 unique values
0 missing
D1728numeric2 unique values
0 missing
D1776numeric2 unique values
0 missing

19 properties

2000
Number of instances (rows) of the dataset.
101
Number of attributes (columns) of the dataset.
2
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
100
Number of numeric attributes.
1
Number of nominal attributes.
0.05
Number of attributes divided by the number of instances.
99.01
Percentage of numeric attributes.
54.25
Percentage of instances belonging to the most frequent class.
0.99
Percentage of nominal attributes.
1085
Number of instances belonging to the most frequent class.
45.75
Percentage of instances belonging to the least frequent class.
915
Number of instances belonging to the least frequent class.
1
Number of binary attributes.
0.99
Percentage of binary attributes.
0
Percentage of instances having missing values.
0.51
Average class difference between consecutive instances.
0
Percentage of missing values.

0 tasks

Define a new task