Data
Bioresponse_seed_0_nrows_2000_nclasses_10_ncols_100_stratify_True

Bioresponse_seed_0_nrows_2000_nclasses_10_ncols_100_stratify_True

active ARFF Publicly available Visibility: public Uploaded 17-11-2022 by Eddie Bergman
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
  • Machine Learning Transportation
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Subsampling of the dataset Bioresponse (4134) with seed=0 args.nrows=2000 args.ncols=100 args.nclasses=10 args.no_stratify=True Generated with the following source code: ```python def subsample( self, seed: int, nrows_max: int = 2_000, ncols_max: int = 100, nclasses_max: int = 10, stratified: bool = True, ) -> Dataset: rng = np.random.default_rng(seed) x = self.x y = self.y # Uniformly sample classes = y.unique() if len(classes) > nclasses_max: vcs = y.value_counts() selected_classes = rng.choice( classes, size=nclasses_max, replace=False, p=vcs / sum(vcs), ) # Select the indices where one of these classes is present idxs = y.index[y.isin(classes)] x = x.iloc[idxs] y = y.iloc[idxs] # Uniformly sample columns if required if len(x.columns) > ncols_max: columns_idxs = rng.choice( list(range(len(x.columns))), size=ncols_max, replace=False ) sorted_column_idxs = sorted(columns_idxs) selected_columns = list(x.columns[sorted_column_idxs]) x = x[selected_columns] else: sorted_column_idxs = list(range(len(x.columns))) if len(x) > nrows_max: # Stratify accordingly target_name = y.name data = pd.concat((x, y), axis="columns") _, subset = train_test_split( data, test_size=nrows_max, stratify=data[target_name], shuffle=True, random_state=seed, ) x = subset.drop(target_name, axis="columns") y = subset[target_name] # We need to convert categorical columns to string for openml categorical_mask = [self.categorical_mask[i] for i in sorted_column_idxs] columns = list(x.columns) return Dataset( # Technically this is not the same but it's where it was derived from dataset=self.dataset, x=x, y=y, categorical_mask=categorical_mask, columns=columns, ) ```

101 features

target (target)nominal2 unique values
0 missing
D5numeric1682 unique values
0 missing
D10numeric1976 unique values
0 missing
D15numeric1976 unique values
0 missing
D28numeric2 unique values
0 missing
D38numeric451 unique values
0 missing
D49numeric245 unique values
0 missing
D58numeric188 unique values
0 missing
D69numeric687 unique values
0 missing
D87numeric407 unique values
0 missing
D127numeric7 unique values
0 missing
D128numeric18 unique values
0 missing
D138numeric6 unique values
0 missing
D150numeric15 unique values
0 missing
D153numeric13 unique values
0 missing
D214numeric234 unique values
0 missing
D236numeric28 unique values
0 missing
D296numeric7 unique values
0 missing
D301numeric5 unique values
0 missing
D403numeric4 unique values
0 missing
D444numeric20 unique values
0 missing
D448numeric12 unique values
0 missing
D454numeric18 unique values
0 missing
D467numeric5 unique values
0 missing
D471numeric12 unique values
0 missing
D514numeric9 unique values
0 missing
D518numeric11 unique values
0 missing
D543numeric4 unique values
0 missing
D567numeric15 unique values
0 missing
D580numeric5 unique values
0 missing
D597numeric4 unique values
0 missing
D629numeric5 unique values
0 missing
D656numeric3 unique values
0 missing
D658numeric4 unique values
0 missing
D663numeric14 unique values
0 missing
D670numeric3 unique values
0 missing
D671numeric4 unique values
0 missing
D677numeric5 unique values
0 missing
D692numeric6 unique values
0 missing
D693numeric6 unique values
0 missing
D726numeric4 unique values
0 missing
D740numeric22 unique values
0 missing
D797numeric5 unique values
0 missing
D826numeric2 unique values
0 missing
D851numeric6 unique values
0 missing
D859numeric2 unique values
0 missing
D890numeric20 unique values
0 missing
D906numeric3 unique values
0 missing
D918numeric7 unique values
0 missing
D921numeric5 unique values
0 missing
D927numeric28 unique values
0 missing
D933numeric9 unique values
0 missing
D944numeric5 unique values
0 missing
D950numeric18 unique values
0 missing
D1005numeric2 unique values
0 missing
D1010numeric2 unique values
0 missing
D1026numeric2 unique values
0 missing
D1048numeric2 unique values
0 missing
D1063numeric2 unique values
0 missing
D1069numeric2 unique values
0 missing
D1071numeric2 unique values
0 missing
D1096numeric2 unique values
0 missing
D1105numeric2 unique values
0 missing
D1116numeric2 unique values
0 missing
D1130numeric2 unique values
0 missing
D1140numeric2 unique values
0 missing
D1155numeric2 unique values
0 missing
D1183numeric2 unique values
0 missing
D1189numeric2 unique values
0 missing
D1197numeric2 unique values
0 missing
D1225numeric2 unique values
0 missing
D1235numeric2 unique values
0 missing
D1245numeric2 unique values
0 missing
D1259numeric2 unique values
0 missing
D1265numeric2 unique values
0 missing
D1268numeric2 unique values
0 missing
D1305numeric2 unique values
0 missing
D1320numeric2 unique values
0 missing
D1343numeric2 unique values
0 missing
D1372numeric2 unique values
0 missing
D1386numeric2 unique values
0 missing
D1394numeric2 unique values
0 missing
D1427numeric2 unique values
0 missing
D1446numeric2 unique values
0 missing
D1460numeric2 unique values
0 missing
D1476numeric2 unique values
0 missing
D1477numeric2 unique values
0 missing
D1479numeric2 unique values
0 missing
D1524numeric2 unique values
0 missing
D1541numeric2 unique values
0 missing
D1559numeric2 unique values
0 missing
D1575numeric2 unique values
0 missing
D1586numeric2 unique values
0 missing
D1639numeric2 unique values
0 missing
D1642numeric2 unique values
0 missing
D1649numeric2 unique values
0 missing
D1699numeric2 unique values
0 missing
D1726numeric2 unique values
0 missing
D1737numeric2 unique values
0 missing
D1750numeric2 unique values
0 missing
D1751numeric2 unique values
0 missing

19 properties

2000
Number of instances (rows) of the dataset.
101
Number of attributes (columns) of the dataset.
2
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
100
Number of numeric attributes.
1
Number of nominal attributes.
45.75
Percentage of instances belonging to the least frequent class.
915
Number of instances belonging to the least frequent class.
1
Number of binary attributes.
0.99
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
0.5
Average class difference between consecutive instances.
99.01
Percentage of numeric attributes.
0.05
Number of attributes divided by the number of instances.
0.99
Percentage of nominal attributes.
54.25
Percentage of instances belonging to the most frequent class.
1085
Number of instances belonging to the most frequent class.

0 tasks

Define a new task