Data
segment_seed_0_nrows_2000_nclasses_10_ncols_100_stratify_True

segment_seed_0_nrows_2000_nclasses_10_ncols_100_stratify_True

active ARFF Publicly available Visibility: public Uploaded 17-11-2022 by Eddie Bergman
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Subsampling of the dataset segment (40984) with seed=0 args.nrows=2000 args.ncols=100 args.nclasses=10 args.no_stratify=True Generated with the following source code: ```python def subsample( self, seed: int, nrows_max: int = 2_000, ncols_max: int = 100, nclasses_max: int = 10, stratified: bool = True, ) -> Dataset: rng = np.random.default_rng(seed) x = self.x y = self.y # Uniformly sample classes = y.unique() if len(classes) > nclasses_max: vcs = y.value_counts() selected_classes = rng.choice( classes, size=nclasses_max, replace=False, p=vcs / sum(vcs), ) # Select the indices where one of these classes is present idxs = y.index[y.isin(classes)] x = x.iloc[idxs] y = y.iloc[idxs] # Uniformly sample columns if required if len(x.columns) > ncols_max: columns_idxs = rng.choice( list(range(len(x.columns))), size=ncols_max, replace=False ) sorted_column_idxs = sorted(columns_idxs) selected_columns = list(x.columns[sorted_column_idxs]) x = x[selected_columns] else: sorted_column_idxs = list(range(len(x.columns))) if len(x) > nrows_max: # Stratify accordingly target_name = y.name data = pd.concat((x, y), axis="columns") _, subset = train_test_split( data, test_size=nrows_max, stratify=data[target_name], shuffle=True, random_state=seed, ) x = subset.drop(target_name, axis="columns") y = subset[target_name] # We need to convert categorical columns to string for openml categorical_mask = [self.categorical_mask[i] for i in sorted_column_idxs] columns = list(x.columns) return Dataset( # Technically this is not the same but it's where it was derived from dataset=self.dataset, x=x, y=y, categorical_mask=categorical_mask, columns=columns, ) ```

17 features

class (target)nominal7 unique values
0 missing
short.line.density.5numeric3 unique values
0 missing
short.line.density.2numeric3 unique values
0 missing
vedge.meannumeric218 unique values
0 missing
vegde.sdnumeric980 unique values
0 missing
hedge.meannumeric245 unique values
0 missing
hedge.sdnumeric1075 unique values
0 missing
intensity.meannumeric1180 unique values
0 missing
rawred.meannumeric643 unique values
0 missing
rawblue.meannumeric747 unique values
0 missing
rawgreen.meannumeric660 unique values
0 missing
exred.meannumeric422 unique values
0 missing
exblue.meannumeric614 unique values
0 missing
exgreen.meannumeric364 unique values
0 missing
value.meannumeric754 unique values
0 missing
saturation.meannumeric1667 unique values
0 missing
hue.meannumeric1689 unique values
0 missing

19 properties

2000
Number of instances (rows) of the dataset.
17
Number of attributes (columns) of the dataset.
7
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
16
Number of numeric attributes.
1
Number of nominal attributes.
0
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
0.14
Average class difference between consecutive instances.
94.12
Percentage of numeric attributes.
0.01
Number of attributes divided by the number of instances.
5.88
Percentage of nominal attributes.
14.3
Percentage of instances belonging to the most frequent class.
286
Number of instances belonging to the most frequent class.
14.25
Percentage of instances belonging to the least frequent class.
285
Number of instances belonging to the least frequent class.
0
Number of binary attributes.

0 tasks

Define a new task