Data
mfeat-factors_seed_3_nrows_2000_nclasses_10_ncols_100_stratify_True

mfeat-factors_seed_3_nrows_2000_nclasses_10_ncols_100_stratify_True

active ARFF Publicly available Visibility: public Uploaded 17-11-2022 by Eddie Bergman
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Subsampling of the dataset mfeat-factors (12) with seed=3 args.nrows=2000 args.ncols=100 args.nclasses=10 args.no_stratify=True Generated with the following source code: ```python def subsample( self, seed: int, nrows_max: int = 2_000, ncols_max: int = 100, nclasses_max: int = 10, stratified: bool = True, ) -> Dataset: rng = np.random.default_rng(seed) x = self.x y = self.y # Uniformly sample classes = y.unique() if len(classes) > nclasses_max: vcs = y.value_counts() selected_classes = rng.choice( classes, size=nclasses_max, replace=False, p=vcs / sum(vcs), ) # Select the indices where one of these classes is present idxs = y.index[y.isin(classes)] x = x.iloc[idxs] y = y.iloc[idxs] # Uniformly sample columns if required if len(x.columns) > ncols_max: columns_idxs = rng.choice( list(range(len(x.columns))), size=ncols_max, replace=False ) sorted_column_idxs = sorted(columns_idxs) selected_columns = list(x.columns[sorted_column_idxs]) x = x[selected_columns] else: sorted_column_idxs = list(range(len(x.columns))) if len(x) > nrows_max: # Stratify accordingly target_name = y.name data = pd.concat((x, y), axis="columns") _, subset = train_test_split( data, test_size=nrows_max, stratify=data[target_name], shuffle=True, random_state=seed, ) x = subset.drop(target_name, axis="columns") y = subset[target_name] # We need to convert categorical columns to string for openml categorical_mask = [self.categorical_mask[i] for i in sorted_column_idxs] columns = list(x.columns) return Dataset( # Technically this is not the same but it's where it was derived from dataset=self.dataset, x=x, y=y, categorical_mask=categorical_mask, columns=columns, ) ```

101 features

class (target)nominal10 unique values
0 missing
att1numeric390 unique values
0 missing
att5numeric252 unique values
0 missing
att6numeric419 unique values
0 missing
att8numeric39 unique values
0 missing
att11numeric19 unique values
0 missing
att12numeric18 unique values
0 missing
att13numeric336 unique values
0 missing
att16numeric351 unique values
0 missing
att17numeric257 unique values
0 missing
att22numeric25 unique values
0 missing
att23numeric18 unique values
0 missing
att26numeric439 unique values
0 missing
att29numeric422 unique values
0 missing
att33numeric44 unique values
0 missing
att35numeric22 unique values
0 missing
att39numeric468 unique values
0 missing
att42numeric364 unique values
0 missing
att43numeric34 unique values
0 missing
att45numeric44 unique values
0 missing
att46numeric23 unique values
0 missing
att47numeric22 unique values
0 missing
att49numeric300 unique values
0 missing
att52numeric413 unique values
0 missing
att54numeric367 unique values
0 missing
att56numeric40 unique values
0 missing
att57numeric44 unique values
0 missing
att60numeric20 unique values
0 missing
att62numeric348 unique values
0 missing
att63numeric464 unique values
0 missing
att67numeric41 unique values
0 missing
att69numeric43 unique values
0 missing
att73numeric304 unique values
0 missing
att77numeric313 unique values
0 missing
att81numeric41 unique values
0 missing
att82numeric25 unique values
0 missing
att83numeric20 unique values
0 missing
att85numeric301 unique values
0 missing
att86numeric460 unique values
0 missing
att89numeric350 unique values
0 missing
att92numeric36 unique values
0 missing
att94numeric25 unique values
0 missing
att95numeric18 unique values
0 missing
att96numeric23 unique values
0 missing
att98numeric390 unique values
0 missing
att99numeric352 unique values
0 missing
att100numeric494 unique values
0 missing
att107numeric22 unique values
0 missing
att108numeric20 unique values
0 missing
att111numeric590 unique values
0 missing
att112numeric297 unique values
0 missing
att114numeric401 unique values
0 missing
att118numeric18 unique values
0 missing
att119numeric23 unique values
0 missing
att121numeric279 unique values
0 missing
att124numeric398 unique values
0 missing
att125numeric411 unique values
0 missing
att127numeric43 unique values
0 missing
att128numeric32 unique values
0 missing
att132numeric26 unique values
0 missing
att134numeric349 unique values
0 missing
att135numeric590 unique values
0 missing
att138numeric326 unique values
0 missing
att140numeric35 unique values
0 missing
att141numeric35 unique values
0 missing
att142numeric23 unique values
0 missing
att143numeric19 unique values
0 missing
att148numeric492 unique values
0 missing
att149numeric302 unique values
0 missing
att150numeric355 unique values
0 missing
att152numeric32 unique values
0 missing
att154numeric22 unique values
0 missing
att155numeric18 unique values
0 missing
att156numeric25 unique values
0 missing
att157numeric379 unique values
0 missing
att158numeric398 unique values
0 missing
att161numeric327 unique values
0 missing
att162numeric449 unique values
0 missing
att165numeric46 unique values
0 missing
att168numeric19 unique values
0 missing
att170numeric394 unique values
0 missing
att172numeric314 unique values
0 missing
att177numeric45 unique values
0 missing
att179numeric22 unique values
0 missing
att181numeric499 unique values
0 missing
att182numeric402 unique values
0 missing
att183numeric540 unique values
0 missing
att185numeric460 unique values
0 missing
att188numeric43 unique values
0 missing
att193numeric445 unique values
0 missing
att196numeric458 unique values
0 missing
att199numeric46 unique values
0 missing
att200numeric41 unique values
0 missing
att201numeric44 unique values
0 missing
att203numeric25 unique values
0 missing
att204numeric19 unique values
0 missing
att207numeric550 unique values
0 missing
att210numeric391 unique values
0 missing
att212numeric38 unique values
0 missing
att214numeric15 unique values
0 missing
att215numeric15 unique values
0 missing

19 properties

2000
Number of instances (rows) of the dataset.
101
Number of attributes (columns) of the dataset.
10
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
100
Number of numeric attributes.
1
Number of nominal attributes.
0
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
1
Average class difference between consecutive instances.
99.01
Percentage of numeric attributes.
0.05
Number of attributes divided by the number of instances.
0.99
Percentage of nominal attributes.
10
Percentage of instances belonging to the most frequent class.
200
Number of instances belonging to the most frequent class.
10
Percentage of instances belonging to the least frequent class.
200
Number of instances belonging to the least frequent class.
0
Number of binary attributes.

0 tasks

Define a new task