Data
mfeat-factors_seed_1_nrows_2000_nclasses_10_ncols_100_stratify_True

mfeat-factors_seed_1_nrows_2000_nclasses_10_ncols_100_stratify_True

active ARFF Publicly available Visibility: public Uploaded 17-11-2022 by Eddie Bergman
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Subsampling of the dataset mfeat-factors (12) with seed=1 args.nrows=2000 args.ncols=100 args.nclasses=10 args.no_stratify=True Generated with the following source code: ```python def subsample( self, seed: int, nrows_max: int = 2_000, ncols_max: int = 100, nclasses_max: int = 10, stratified: bool = True, ) -> Dataset: rng = np.random.default_rng(seed) x = self.x y = self.y # Uniformly sample classes = y.unique() if len(classes) > nclasses_max: vcs = y.value_counts() selected_classes = rng.choice( classes, size=nclasses_max, replace=False, p=vcs / sum(vcs), ) # Select the indices where one of these classes is present idxs = y.index[y.isin(classes)] x = x.iloc[idxs] y = y.iloc[idxs] # Uniformly sample columns if required if len(x.columns) > ncols_max: columns_idxs = rng.choice( list(range(len(x.columns))), size=ncols_max, replace=False ) sorted_column_idxs = sorted(columns_idxs) selected_columns = list(x.columns[sorted_column_idxs]) x = x[selected_columns] else: sorted_column_idxs = list(range(len(x.columns))) if len(x) > nrows_max: # Stratify accordingly target_name = y.name data = pd.concat((x, y), axis="columns") _, subset = train_test_split( data, test_size=nrows_max, stratify=data[target_name], shuffle=True, random_state=seed, ) x = subset.drop(target_name, axis="columns") y = subset[target_name] # We need to convert categorical columns to string for openml categorical_mask = [self.categorical_mask[i] for i in sorted_column_idxs] columns = list(x.columns) return Dataset( # Technically this is not the same but it's where it was derived from dataset=self.dataset, x=x, y=y, categorical_mask=categorical_mask, columns=columns, ) ```

101 features

class (target)nominal10 unique values
0 missing
att4numeric440 unique values
0 missing
att5numeric252 unique values
0 missing
att8numeric39 unique values
0 missing
att10numeric18 unique values
0 missing
att12numeric18 unique values
0 missing
att13numeric336 unique values
0 missing
att16numeric351 unique values
0 missing
att18numeric405 unique values
0 missing
att19numeric42 unique values
0 missing
att20numeric41 unique values
0 missing
att21numeric41 unique values
0 missing
att28numeric323 unique values
0 missing
att32numeric42 unique values
0 missing
att34numeric20 unique values
0 missing
att36numeric23 unique values
0 missing
att40numeric411 unique values
0 missing
att41numeric326 unique values
0 missing
att44numeric39 unique values
0 missing
att45numeric44 unique values
0 missing
att47numeric22 unique values
0 missing
att48numeric23 unique values
0 missing
att50numeric484 unique values
0 missing
att53numeric375 unique values
0 missing
att54numeric367 unique values
0 missing
att55numeric42 unique values
0 missing
att56numeric40 unique values
0 missing
att57numeric44 unique values
0 missing
att58numeric24 unique values
0 missing
att61numeric302 unique values
0 missing
att62numeric348 unique values
0 missing
att65numeric449 unique values
0 missing
att68numeric38 unique values
0 missing
att71numeric20 unique values
0 missing
att72numeric25 unique values
0 missing
att74numeric361 unique values
0 missing
att75numeric435 unique values
0 missing
att76numeric395 unique values
0 missing
att77numeric313 unique values
0 missing
att78numeric432 unique values
0 missing
att79numeric43 unique values
0 missing
att81numeric41 unique values
0 missing
att84numeric20 unique values
0 missing
att86numeric460 unique values
0 missing
att90numeric405 unique values
0 missing
att91numeric42 unique values
0 missing
att92numeric36 unique values
0 missing
att93numeric45 unique values
0 missing
att102numeric394 unique values
0 missing
att104numeric44 unique values
0 missing
att106numeric23 unique values
0 missing
att108numeric20 unique values
0 missing
att111numeric590 unique values
0 missing
att114numeric401 unique values
0 missing
att115numeric44 unique values
0 missing
att116numeric30 unique values
0 missing
att117numeric41 unique values
0 missing
att118numeric18 unique values
0 missing
att119numeric23 unique values
0 missing
att120numeric24 unique values
0 missing
att121numeric279 unique values
0 missing
att122numeric341 unique values
0 missing
att124numeric398 unique values
0 missing
att126numeric374 unique values
0 missing
att127numeric43 unique values
0 missing
att132numeric26 unique values
0 missing
att138numeric326 unique values
0 missing
att139numeric37 unique values
0 missing
att141numeric35 unique values
0 missing
att143numeric19 unique values
0 missing
att145numeric278 unique values
0 missing
att146numeric434 unique values
0 missing
att154numeric22 unique values
0 missing
att157numeric379 unique values
0 missing
att158numeric398 unique values
0 missing
att159numeric357 unique values
0 missing
att160numeric403 unique values
0 missing
att161numeric327 unique values
0 missing
att164numeric34 unique values
0 missing
att166numeric25 unique values
0 missing
att169numeric359 unique values
0 missing
att171numeric435 unique values
0 missing
att173numeric454 unique values
0 missing
att174numeric381 unique values
0 missing
att178numeric18 unique values
0 missing
att180numeric26 unique values
0 missing
att182numeric402 unique values
0 missing
att185numeric460 unique values
0 missing
att186numeric434 unique values
0 missing
att187numeric43 unique values
0 missing
att189numeric45 unique values
0 missing
att192numeric25 unique values
0 missing
att194numeric517 unique values
0 missing
att199numeric46 unique values
0 missing
att200numeric41 unique values
0 missing
att207numeric550 unique values
0 missing
att210numeric391 unique values
0 missing
att212numeric38 unique values
0 missing
att213numeric36 unique values
0 missing
att214numeric15 unique values
0 missing
att215numeric15 unique values
0 missing

19 properties

2000
Number of instances (rows) of the dataset.
101
Number of attributes (columns) of the dataset.
10
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
100
Number of numeric attributes.
1
Number of nominal attributes.
0
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
1
Average class difference between consecutive instances.
99.01
Percentage of numeric attributes.
0.05
Number of attributes divided by the number of instances.
0.99
Percentage of nominal attributes.
10
Percentage of instances belonging to the most frequent class.
200
Number of instances belonging to the most frequent class.
10
Percentage of instances belonging to the least frequent class.
200
Number of instances belonging to the least frequent class.
0
Number of binary attributes.

0 tasks

Define a new task