Data
mfeat-factors_seed_0_nrows_2000_nclasses_10_ncols_100_stratify_True

mfeat-factors_seed_0_nrows_2000_nclasses_10_ncols_100_stratify_True

active ARFF Publicly available Visibility: public Uploaded 17-11-2022 by Eddie Bergman
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Subsampling of the dataset mfeat-factors (12) with seed=0 args.nrows=2000 args.ncols=100 args.nclasses=10 args.no_stratify=True Generated with the following source code: ```python def subsample( self, seed: int, nrows_max: int = 2_000, ncols_max: int = 100, nclasses_max: int = 10, stratified: bool = True, ) -> Dataset: rng = np.random.default_rng(seed) x = self.x y = self.y # Uniformly sample classes = y.unique() if len(classes) > nclasses_max: vcs = y.value_counts() selected_classes = rng.choice( classes, size=nclasses_max, replace=False, p=vcs / sum(vcs), ) # Select the indices where one of these classes is present idxs = y.index[y.isin(classes)] x = x.iloc[idxs] y = y.iloc[idxs] # Uniformly sample columns if required if len(x.columns) > ncols_max: columns_idxs = rng.choice( list(range(len(x.columns))), size=ncols_max, replace=False ) sorted_column_idxs = sorted(columns_idxs) selected_columns = list(x.columns[sorted_column_idxs]) x = x[selected_columns] else: sorted_column_idxs = list(range(len(x.columns))) if len(x) > nrows_max: # Stratify accordingly target_name = y.name data = pd.concat((x, y), axis="columns") _, subset = train_test_split( data, test_size=nrows_max, stratify=data[target_name], shuffle=True, random_state=seed, ) x = subset.drop(target_name, axis="columns") y = subset[target_name] # We need to convert categorical columns to string for openml categorical_mask = [self.categorical_mask[i] for i in sorted_column_idxs] columns = list(x.columns) return Dataset( # Technically this is not the same but it's where it was derived from dataset=self.dataset, x=x, y=y, categorical_mask=categorical_mask, columns=columns, ) ```

101 features

class (target)nominal10 unique values
0 missing
att1numeric390 unique values
0 missing
att2numeric446 unique values
0 missing
att3numeric541 unique values
0 missing
att4numeric440 unique values
0 missing
att5numeric252 unique values
0 missing
att10numeric18 unique values
0 missing
att11numeric19 unique values
0 missing
att13numeric336 unique values
0 missing
att14numeric420 unique values
0 missing
att15numeric421 unique values
0 missing
att18numeric405 unique values
0 missing
att20numeric41 unique values
0 missing
att22numeric25 unique values
0 missing
att25numeric302 unique values
0 missing
att26numeric439 unique values
0 missing
att33numeric44 unique values
0 missing
att38numeric483 unique values
0 missing
att43numeric34 unique values
0 missing
att47numeric22 unique values
0 missing
att48numeric23 unique values
0 missing
att51numeric471 unique values
0 missing
att56numeric40 unique values
0 missing
att59numeric23 unique values
0 missing
att61numeric302 unique values
0 missing
att64numeric404 unique values
0 missing
att65numeric449 unique values
0 missing
att66numeric383 unique values
0 missing
att68numeric38 unique values
0 missing
att69numeric43 unique values
0 missing
att71numeric20 unique values
0 missing
att73numeric304 unique values
0 missing
att75numeric435 unique values
0 missing
att76numeric395 unique values
0 missing
att78numeric432 unique values
0 missing
att79numeric43 unique values
0 missing
att80numeric40 unique values
0 missing
att81numeric41 unique values
0 missing
att82numeric25 unique values
0 missing
att83numeric20 unique values
0 missing
att85numeric301 unique values
0 missing
att86numeric460 unique values
0 missing
att93numeric45 unique values
0 missing
att94numeric25 unique values
0 missing
att97numeric473 unique values
0 missing
att98numeric390 unique values
0 missing
att100numeric494 unique values
0 missing
att103numeric39 unique values
0 missing
att104numeric44 unique values
0 missing
att106numeric23 unique values
0 missing
att107numeric22 unique values
0 missing
att109numeric450 unique values
0 missing
att111numeric590 unique values
0 missing
att113numeric407 unique values
0 missing
att114numeric401 unique values
0 missing
att115numeric44 unique values
0 missing
att117numeric41 unique values
0 missing
att120numeric24 unique values
0 missing
att121numeric279 unique values
0 missing
att122numeric341 unique values
0 missing
att123numeric548 unique values
0 missing
att125numeric411 unique values
0 missing
att127numeric43 unique values
0 missing
att128numeric32 unique values
0 missing
att130numeric23 unique values
0 missing
att133numeric364 unique values
0 missing
att135numeric590 unique values
0 missing
att136numeric441 unique values
0 missing
att137numeric335 unique values
0 missing
att138numeric326 unique values
0 missing
att144numeric23 unique values
0 missing
att145numeric278 unique values
0 missing
att149numeric302 unique values
0 missing
att151numeric37 unique values
0 missing
att152numeric32 unique values
0 missing
att156numeric25 unique values
0 missing
att157numeric379 unique values
0 missing
att158numeric398 unique values
0 missing
att159numeric357 unique values
0 missing
att164numeric34 unique values
0 missing
att166numeric25 unique values
0 missing
att167numeric22 unique values
0 missing
att168numeric19 unique values
0 missing
att169numeric359 unique values
0 missing
att170numeric394 unique values
0 missing
att171numeric435 unique values
0 missing
att173numeric454 unique values
0 missing
att175numeric44 unique values
0 missing
att180numeric26 unique values
0 missing
att181numeric499 unique values
0 missing
att182numeric402 unique values
0 missing
att186numeric434 unique values
0 missing
att187numeric43 unique values
0 missing
att189numeric45 unique values
0 missing
att191numeric25 unique values
0 missing
att196numeric458 unique values
0 missing
att197numeric255 unique values
0 missing
att200numeric41 unique values
0 missing
att203numeric25 unique values
0 missing
att209numeric292 unique values
0 missing
att212numeric38 unique values
0 missing

19 properties

2000
Number of instances (rows) of the dataset.
101
Number of attributes (columns) of the dataset.
10
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
100
Number of numeric attributes.
1
Number of nominal attributes.
0
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
1
Average class difference between consecutive instances.
99.01
Percentage of numeric attributes.
0.05
Number of attributes divided by the number of instances.
0.99
Percentage of nominal attributes.
10
Percentage of instances belonging to the most frequent class.
200
Number of instances belonging to the most frequent class.
10
Percentage of instances belonging to the least frequent class.
200
Number of instances belonging to the least frequent class.
0
Number of binary attributes.

0 tasks

Define a new task